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SYMBOLS

E(v) time-varying matrix defined in appendix D (table 1)

a 1ift-curve slope equal to 6.28
B o frame formed by vectors (6,,b,,53) which defines the blade
frame
BQ tip loss factor
b number of blades
(B1,02,53) orthogonal unit vectors defined as the B frame
C frame formed by vectors (ci,cp,c3) which defines the gyro cage
frame - ' o :
C ‘transformation matrix between state variables and measurement
Co ‘cdupling'constant hetween blade and angular displacement of
gyTo ‘
s s D
CD drag coefficient, —
(1/2)0v mR
CL 1ift coeificient, —————LLE——E
. ] (1/2)pV mR
Clgwg,ci%¢g, _
c3(9),Ch(v), L . .. 51
def db T A
c5(y)06(y), [  deTined by equation (A35)
c7{y) '
Cg ‘ ‘ damping:cdnsﬁant for nonrotating part of swashplate,
Nm/rad/sec (ft-lb/rad/sec)
CTA thrust coefficient,-fj;—jl——jf
@ blade chord, m {ft)
¢y _ defined by equation (A20)
e defined by equation (A20)
(¢1,¢2,C3) orthogonal unit vectors defined as the C frame
eq damping constant about feéathering axis (roteting axis),

Wm/rad/sec {ft-1b/rad/sec}
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(21,82,23)
HG

hLC

K1,B2,B3,
Bk,B5

R

kg

vi

drag, N (1b)

time rate of change with respect to inertiasl space

hinge offset, m (ft)

force at hub in rotating coordinates along X axis, N (1b)
force at hub in rotating coordinates along Y axis, N {1b)
forward direction

column vechtor of foreing functions for rotor equations

frame formed by vectors (él,éz,ég)-which defines the gyro frame
rotational speed of gyro, rpm

orthogonal unit vectors defined as the G frame

angular momentum of gyro, Nm?/sec (slug-ft?/sec)

distance from hub to load cell moment sensor, m (ft);

ELC = (0,0,thz)

distance from hub to location of shaft moment sensor, m (ft);

[~

B, = (0,0,hsz)
diametric moment of inertia of gyro, kg-m? (slug-ft2)
gyro inertia matrix defined by equation (B13), kg-m? (slug-rt2)

equivalent inertia of gyro I + l.SC%Ix, kg-n? {slug-ft?)

D
polar moment of inertia of gyro, kg—m2 (slug«ftz)
inertia characteristics of blade, kg-m? (slug-ft2)

stationary spring constant for swashplate, Nm/rad (ft-1b/rad)
defined by equation (A34)

ratio of gyro angular velocity to rotor angular velocity

spring constant of blade, Nm/rad {ft-1b/rad);

k. =1 QZ[?2 -1 - iéiglg - L tan 6%

B ¥ R.b-e 8



exXc

MeX.C xe

Mexeyq

MYB.EI‘O

My . .
Xinertia

Myinertia
Mxmech

Mymech
Meg

Mys

spring constant about feathering axis, Nm/rad (ft-1b/rad)
lift, N (1b)

excitation of the gyro by the blade in the R frame along X},
Nm (£t-1v)

x-component of M_ . in C frame, Nm {ft-1b}
y-component of M_  in C frame, Nm {ft-1Db)
applied moment to gyro along X in the C frame, Nm (ft~1b)
applied moment to gyro along Y in the C frame (Nm (ft-1b)

load cell roll moment in stationary coordinates measured 0.91h m
(3 ft) below hub, Nm {(ft-1b)

load cell pitch moment in stationary coordinates measured 0.914 m
(3 ft) below hub, Nm (ft-1b)

moment about ¥ axis in the B frame

moment about Y axis in the B frame

serodynamic moment about flapping exis, Im (ft-1b)
inertis moment sbout feathering axis, Nm {f£=1b)
inertia moment about flapping axis, Nm (ft-1b)
mechanical moment about feathering axis, Nm {(ft-1b)
mechanical moment abouf flapping axis, Nm (ft-1b)

hu? moment in staticnary coordinates (left roll positive), Nm
ft-1b) .

hub moment in stationary coordinates (nose-up positive), Nm
(£t-1b)

shaft bending moment sbout X, axis 0.369 m (0.917 ft) below

hub, Nm (ft-1b)

shaft bending moment sbout Y, axis 0.369 m (0.917 £t) below
hub, Nm (ft-1b)

roll moment at hud in rotating coordinstes (positive left roll},
Nm (ft-1b) -

pitch moment at hub in rotating coordinates (positive nose-up),
Nm {ft-1b)
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viii

nth blade
ratio of flapping natural frequency to rotor frequency -%

ey , N/m? {(1b/ft?)

dynamic pressure, 3

frame formed by vectors (ri,rs,rs) which defines the shaft axis
system rotating at rotor speed

blade radius, m {ft)

distance along blade from center of rotation, m (ft)

orthogonal unit vectors defined as the R frame

frame formed by vectors (81,85,53) which defines the stationary
axis system of the rotor; also referred to as the inertial
frame

orthogonal unit vectors defined as the & frame

rotor thrust, N (1b)

time, sec

radial, tangential, and perpendicular wind velocity components,
m/sec {ft/sec)

input vector
airspeed, m/sec (ft/sec)

¥ axis aft
7 axis

right-handed coordinate system with the positive
over helicopter tall section and the positive
pointing up

ratio of radial distance to blade radius, %;

state variable

measurement vector

angle between relative wind and blade chord axis - angle of
attack, deg

angle of attack of hub plane
flapping angle of blade (positive up), deg

precone angle, deg



B1s82,B3

81462,03

8
1C

%

A

V1

Vo

flapping angles of blades 1, 2, and 3, deg

cpaR;

I
A

pitch flap coupling, deg

Lock number, y =

gyro angle, left roll positive, rotating coordinates, deg
gyro angle, nose-up positive, rotating coordinates, deg
lag angle of blade, deg

blade aweep’ angle, deg

feathering angle of blade, deg

collective pitch, deg

blade twist, deg

cyclic pitch angle, deg

swashplate pitch sngle, positive nose-up (stationary coordinates),
deg

feathering angles of blades 1, 2, and 3, deg

cyclic pitch, nose up at 0, deg

90°, deg

eyelic pitch, nose up at ¢

inflow positive up, AO + Axx cos ¥ + eyx sin ¢

V cos o

-8

swashplate roll moment input (stationary coordinates, positive
left roll), Nm (ft-1b)

advance ratio,

swashplate pitch moment input (stationary coordinates, positive
nose-up), Nm (ft-1b)

air density, keg/m3 (slug/ft3)
inflow angle, deg

swashplate roll angle, positive left roll, stationary coordinates,
deg ‘

azimuth angle measured in direction of rotation, deg
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w50
C/R

c/s

G/C

R/S

sl

pitch link angle, deg (see fig. 3)

angular velocity of rotor, rad/sec

blade flapping natural frequency, rad/sec

gyro angular velocity, rad/sec

angular velocities of blade defined by equation (A3), rad/sec

angular velocity of

angular velocity of
rad/sec

angular velocity of

angular velocity of
rad/sec

c

C

frame with respect to

freme with respect to

frame with respect to

frame with respect to

R frame, rad/sec

inertial space,

C frame, rad/sec

inertial space,



APPLICATTION OF A PARAMETER TDENTTIFICATION TECHNIQUE
TO A HINGELESS HELICOPTER ROTOR
Gerd Kanning and James C., Biggers

Ames Resesarch Center
SUMMARY

A mathematical model of a three-bladed hingeless rotor with. a high-speed
gyro in the feathering system was developed and parameters of the model were
estimated using a parameter identification technique. The flapping degree of
freedom of each blade was modeled by assuming the existence of a virtual
hinge near the hub., The feathering degree of freedom was modeled in conjunc-
tion with the motion of the gyro. The gyro prescribed the feathering
sequence to each of the blades. In the aserodynamic moment terms, the reverse
velocity effect of the retreating blades was included. The complete gyro and
rotor equations contain time-varying periodic coefficients due to the forward
speed of the rotor. A digital simulation of these equations was obtained to
generate steady-state and transient solutions of the mathematieal model., For
steady-state operstion, with the gyro inoperative, the model response was
matched quite acecurately to the measured data by adjusting selected model
parameters with a parameter identification technigue. For transient opera-
tion, with the rotor controlled by the gyro, considerably larger hub moments
were calculated than measured while calculated gyro angles were in reasonable
agreement with measured gyro angles. Application of the parameter identifica~
tion technique resulted in improved hub moment matching when as many as 10
parameters of the model were adjusted simultaneously. The sensitivity of the
blade response to small changes in the parameters was also calculated. The
nost sensitive parameters were found to be collective pitch, blade twist, tip
loss factor, blade to gyro coupling constant, Lock number, and equivalent
flapping hinge spring constant.

INTRODUCTION

The application of parameter identification techniques to the problem of
estimating stability derivatives for fixed-wing aircraft has been reported by
many investigators (refs, 1, 2, and 3). These techniques have been applied
to helicopters more recently (refs. 4 and 5), In reference 4, stability and
control derivatives were estimated from helicopter flight data; in reference
5, the feasibility of estimating specific parameters contained in a rotor
math model was investigated., The results of reference 5 indicate that good
estimates of the parameters can be obtaelned with identification techniques.
However, in reference 5, the math model itself was used to generate the data
used in the identification procedure, This provides a check on the parameter
identification algorithm, but provides no information concerning the validity



of the math model itself. This limitation is removed in this report by use
of data obtained in the wind tunnel for the identification procedure.

A gyro-controlled hingeless helicopter rotor has been tested in the Ames
40— by 80-Foot Wind Tunnel, The rotor blades were relatively stiff with an
undamped natural flapping frequency of about 1.25 cyeles/rev at 100 percent
EPM. An expository analysis of this rotor system is given in references 6
and T where calculated eyeclic angles for trimming rotor hub and swashplate
moments were compared with experimental data at high advance ratios (> 0.5).
Vibratory loads on the same rotor at high advance ratios were studied in ref-
erence 8, The mathematical model used in the above three references contains
simplifying assumptions that are valid only for high advance ratios. The
mathematical model developed here is valid for advance ratios below 0.5.
Although the wind-tunnel tests were aimed at the slowed-stopped operation of
the rotor and therefore emphasized high advence ratios, some data were
obtained for advance ratios less than 0.5. These latter data were used for
parameter identification in refining the paraméters of the math model of the
rotor. In the math model, each blade of the rotor was allowed flapping and
feathering degrees of freédom independent of the others. The first blade
flapping mode wae represented by rigid blade motion about a spring-restraint
virtual hinge. The blades were also swept forward by an angle ¢, from the
feathering axis, allowing flapping moments to be fed back into the feathering
axis and hence to the control gyro.

The behavior of the mathematical model for different inputs was investi-
gated by integrating the time-varying periodic differential equations forward
for several rotor revolutions. The simulation was compared with wind-tunnel
dats during both steady-state and transient conditions. Steady-state and
transient responses for advance ratios up to 0.40 were used in the comparison.
Parameters of the model such as blade inertia, flapping hinge spring constant,
blade to gyro coupling constant, Lock number, tip loss factor, collective
pitch, and blade sweep angle were systematicelly varied using a parameter
identification technique to give the best match between the simulation and
the wind-tunnel messurements. The sensgitivity of these parameters on the
output response was also calculated,

DEVELOPMENT OF THE ANALYTICAL MODEL

An analytical model was developed for a three-bladed hingeless rotor
with & high-speed gyro in the festhering system (fig. 1), A list of assump-
tions and the derivation of the equations are given in appendices A snd B,
The complete rotor equations are derived as follows. First, the equations
for the blade motion are obtained; the equations for the gyro and gyro-blade
interaction are then derived; and, finally, these two sets of equations are
corbined to yield the complete set.
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~ Feothering axis
Figure 1l.- Gyro-controlled Figure 2.- Rotor-blade coordinate
hingeless rotor. system,

Blade Equations

The equations for the flapping and feathering motion are cbtained by
writing the moment equilibrium about the hub, Figure 2 shows the coordinate
system used in writing the moment equilibrium. The XS,YS,ZS coordinates
represent the stationary axis system with the ¥g axis rearward over the
tail section of the helicopter, the Y5 saxis to the right, and the Z; axis
upward. The positive direction of rotation sbout each stationary axis is
indicated in the figure. The azimuth angle ¢ 1is measured positive from the
stationary axis X5 in the direction of rotor rotation. The positive diree-
tion of the flapping angle. B, inplane angle 7, and feathering angle ¢ is
also shown in figure 2. The effects of the inplane motion are inecluded in
the equations derived in appendix A, However, for the verification and dis-
cussions in this report, the equations are simplified by fixing the inplane
deflection at ©,, the preset blade sweep angle. This simplification is
reasonable if resonance of the [ motion is avoided (ref. €). The moments
acting about the hinge point are the inertial, serodynamic, and mechanical
moments. Each of these moments for the flapping degree of freedom is devel-
oped in this section, For the feathering degree of freedom, the equations
are developed in conjunction with the gyro eguations in appendices A and B
because the feathering axis is mechanically connected to the gyro system.

The inertia moment about the flapping axis is derived in appendix A

(eq. (A13}):

ST B (I +Tc2-1)8% +31 S q%

v b ¥ O z e

2y Rb-

- - 5 - - 2 1
(I, + I I )eé - (I, Iy)coﬂ & {1

MYinertia



The gerodynamic moment =zbout the flapping axis is also derived in appendix A.
For linear serodynamics with no stall effects included, the aerodynamic
moment is written in abbreviated form {eq. (A36)) as

My o -Kl{-02§¢)é + [-C1(p) + Ch(w)tan 6318 + C3(¥)ey + Chiy)o_
(o + 5+ oI, + CTOVI ) (2)

The coefficients of equation {2), defined by equations (A3k) and (A35), are
repeated here for completeness:

¥I_6?
Kl = ——i—
2
2 2
oo
, sz
3 3
ne 5o
3By
- B e
Bh = - —
_ l
B ed
BS = 5-———3‘

Ry

c1(y) = £ Bb + nlcos ¥ + T sin $)B3 + 3 u2(g_ + £ cos 24 + sin 29)B2
ce(@) = -B% + % (t eos ¥ + sin ¥)B3

C3(y) = B5 + 2u(g cos y + sin ¥)Bh + uz(%- - % cos 2y + r sin 21p)B3
Ch(y) = B + 2u(z _cos ¢ + sin ¥)B3 + u@(% - % cos 2y + ¢ _sin ew)Bz
C5{(yp) = B3 + ulg _cos b + sin §)B2

c6(yp) = BY cos ¢ + p{cos ¢ sin ¢ + cbcoszw)B3

CT(y) = Bt sin ¢ + ulsin?yp + z cos ¥ sin ¥)B3

The reverse flow region encountered by the retreating blade during for-
ward flight was modeled in the aserodynamic moment term of eguation (2). The
reverse flow region was epproximated by assuming that reverse flow existed

L



from an azimuth 225° to 315° and from the root x = u. The appropriate
changes required in the coefficients of the aerodynamic moment equation (2)
are given in appendix A,

The other moment component is produced by the spring restraint of the
blade at the hub. For the flapping axis, this moment is given by kB(B-BP),

where k, represents the spring constant of the blade and (B-BP) represents

the flapping deflection away from the precone position.

The mechanical spring moment for the flapping axis can be written as
(eq. (A37)):

My eon = KalB = 8)) | (3}

The moment equilibrium about the flapping axis is now given by the sum
of the inertia, aerodynamic, and mechanical moments. The flapping equation
mey be written by combining equatioms (1), (2), and (3) to form:

M?inertia + MYaero * Mymech =0

which gives

p > 2 3. B 2. _ L _ 2
IyB - (Ix + cho Iz)ﬂ B+ =1 Q28 (Ix + Iy Iz)ﬂe (Iz Iy)coﬂ 8

27y Rb-e

“K1{-c2(yp)f + [-C1(p) + chl{y)tan 5518 + C3{ple, + ch(ylo, + ch{w)scyc

+05(¢)AO + C6(¢)1x + CT(w)Ay} + kB(B" Bp) =0
(L)

Equation (Y4) describes the flapping motion of each blade and will be used
later to develop equations for a three-bladed rotor.

Gyro Equations

The gyro of the rotor system modeled prescribes a feathering sequence to
the bplades. The equations for the gyro are developed about its axes system
and the relstionship of the feathering axes with the gyro is then established.
The coordinates used to derive the gyro equations are shown in figure 3. The
coordinates X, ,Y¥ ,Z5 and Xp,¥pr,Z, are the stationary and rotating coordi-
nates of the blade as previously defined., The XC,YC,ZC coordinates define
the rotating coordinates of the gyro. The equations for the gyro are

obtained by expending the angular momentum equation [dﬁG/dt]s = HG' This

equation is expanded in appendix B. In terms of the gyro coordinates &
and §&;, the equations for the gyro are {egs. (B25) and (B26)):



I8, + (13n2kR - 1.02)8, + (T 380y, - 2QIG)52 - ac_ 8y + csél + K8 - M

G G €XCxe

= visin{¥+ ) - vycos(w+y )

(5)

82 + (T30 - 140%)8p - (I3fkp - 20I,)8; + QG 8 + C 62 + K 3, - Mexey
= vlcos(¢+wo) + vzsin(¢+¢o)

(6)

The left sides of the equations
represent the inertial properties of
the gyro, the spring and damper effects
(Kq,Cy) about the &; and §, axes, and
the excitation of the gyro by the.

blades (Mgy.,  and Mexcyc)' The right

side of the equations represent the
rol) (v1) and piteh (v,) moment inputs
of the pilot. The pilot input is via
a moment {not displacement) applied to
the gyro in the nonrotating frame,

The gyro responds %o the input moment
as well as to moments applied by the
blades. The Méxcxc and Mexcyc terms

in equations (5) and (6) are the
moments applied by the blades and must
now be obtained from the feathering
equations of the blade expressed in the
gyro axes system. The moments contributing to the excitation are the bhlade
inertia and mechanical moments gbout the feathering sxis. Aerodynamic moments
about the feathering axis are assumed negligible. In addition, flapping
moments coupling into the feathering axis due to the forward sweep of the
blade must also be included. The complete moment expression in the blade
frame, given by equation (B27), is expanded by substituting the appropriate
moments and then expressing the moment equation in the gyro axis system. The
excitation of the gyro by the blade expanded for a three-bladed rotor and
transformed to the X,,Y, coordinates is given as (egs. (B31) and (B32)):

Figure 3.- Gyro coordinates.

A I A TR 1
Mexcxc = CZ{-—IX (bl-- 5 fp= > 93) - ce(el— 5 o= 5 6‘3) - (IZ-Iy)QZ(Sl— Fl 8q



3 cz{-Ix(§2-§3) - Ce(ez—ég) - (IZ—Iy)Qz(ez-%) -k

Mexcyc = 8(92-33)
~(

T LT 00(Bo-Bs) + (T,-T )t 02(82-83) + ¢ k,[(82-8)) - (85-8 )]}

(8)

The gyro equations are now obtained by combining equations (7) and (8) with
(5) and (6) and transforming the feathering angle 0 for each blade and their
derivatives to gyro coordinates. The transformation between §6;, 82, €3 and
§1, 85 is given by (eq. (AbO)):

ei = Cz[ﬁlcos(i-l) g% + ézsin(i—l) 2n| . i=1,.

b L) . -gb (9)

where b = 3. Substituting the above transformation and its deriwvatives into

equations (7) and (8) gives the complete gyro equations for a three-bladed
rotor {egs. (B35) and (B36)):

3021 \5.4 2 o 02i ; 2 2 3 a2 25.4 2
(IG+ 5 CQIX)51+ 5 cec261+csal+(139 ko=1.0 Yo+ CZ(IZ—Iy)Q §1+ Sk

2
5 C38,+K_8)

9

- » l ' ; - 2
+(IgﬂkR—2ﬂIG)GZ-QCS62+02(Ix+1y-IZ)52(81— > B 5 33)'02(Iz'1y)‘:o“
><(E‘l' %' Ba— %‘ BS) 'CZCOKB[(BI-BP)- %‘ (Bz-ﬁp)-’ ‘é’ (Bg—Bp)]

= vlsin(w+wo)-vzcos(w+¢o)
(10)

T+ 3027 Yior 2 ¢ C25,4C 3o+(T202% 02T )8+ = C2(I ~I )923 + 3k 026,4K 6
G 2 “27x)727 B Fgr2taihgharied kg G’ 2" 2 Y2 gy 27 p tprevaThgv2

p V3 L s V3 2
~(TaMp-201 ) 81+0C 81+ =5 Co (T 4T -1 )alBy-83)- =5 Co(I -T )z 0%(82-83)

V3 :
- 73 0ot k[ (Bo-8 )-(85-8)] = vycos(vry Jvosin(y+y )

(11)

Rotor Eguations

The flapping equation (4) was written for one blade. For the three-
bladed rotor, the flapping angle B and the feathering angle are subscripted
1, 2, and 3; for the azimuth angle ¥ in equation (%), the substitution of
P, Y+120°, and P+240° for each blade must be made, respectively.

The flapping
equation can then be written as



31 .8

B . 2_ 2 $ = 2a - . - - 2
I.B; (T 1.5, 1098+ 5 1, 520 98 (Ix+Iy 1,)06,-(I - )z 0%,

_m[-cz[w(i—l) 2—1];]['3-01[%(1-1) Q—E]chh[w(i-l) Q—E—]Bitan 63+C3[w+(i-1) 2—%]81_

+kB(Bi_BP) =0 i=1,2,3 (12)

The feathering angle 6 and its derivatives in equation (12) are written in
gyro coordinates (see eq. (9)). In appendix A, the transformation equation
(9) has been spplied to equation (12) to convert the feathering angles to gyro
angles. The equations for each blade are given in expanded form by equations
(ak1), (ak2), and (A43). The gyro equations with the feathering equations
interconnected for the three blades were written in gyro coordinates in the
previous section. The complete set of rotor equations is now given by the
two gyro equations (10) and (11) and the blade equations from equation (12)
for i =1, 2, and 3.

Method of Solution and Transformation of Equations
to Measurement Coordinates

In this section, the transformation to measurement coordinates is dis-
cussed, followed by a description of the method for calculating time histories
from the math model.

The five eguations discussed in the previous section (egs. (10) and (11)
and eq. (12) for i = 1, 2, 3) are next written in first-order form for the
digital simulation. The first-order state varisbles asre defined as follows:

X1 31
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Applying these transformations of state varisbles to the five rotor eguations
gives the equations of the rotor in the form X = E(t)X + F(t) (see table 1).
The equations were integrated using the Runge-Kutta, fixed stepwise integra-
tion routine. The ocutput of the integration process produced flapping angles
and gyro angles. However, flapping angles could not be measured during the
wind-tunnel tests; hub moments were recorded instead. Therefore, a transfor-
mation was required to convert the flapping angles to hub moments. The trans-
formation from moments to flapping angles, derived in appendix C (eqs. {(C12)
and (C13)), is given below:

1 1
Mg k8(§ V3 By = 5 V3 53) (1k4)

X

1 1 '
Mg, = kB(—Bl t3 Bt 3 83) (15)

where the shearing force at the hinge was considered small since the rotor
was lightly loaded. Equations (14) and (15) were written in the form

y = Ux, vhere ¥ 4is the vector of moments and, X is the vector of flapping
angles. The complete set of rotor equations (x = E{(t)x + £(t) and ¥ = Cx) in
first-order form iz shown in table 1.

The simulation and measurement results were both performed in the rotat-
ing coordinate frame Xp,Y.,Z, (shown in fig. 2). During the analysis of the
data, it was found in some instances that the hub moments and angles could be
better understood if the moments and angles were transformed to a nonrotating
coordinate frame at the hub center - the Xy,Y5,2 frame discussed previously
(fig. 2). The transformations between these reference frames are slso given
in appendix C,

BEHAVIOR OF SIMULATION MODEL

Parameters of Model

The nominal values of the parameters for the rotor and the gyro used in
the analytical model simulation are given in table 2, These parameters were
obtained by direct measurement or calculation,

The first flapping mode of the blade was represented by rigid blade
motion about a spring restraint virtual hinge located a distance e radially -
from the hub center. The spring constant sbout this virtual hinge was calcia
lated from

=1 02fp2_1_3_° _ 1
kg .IyQ (p 1-3 R B tan 53) (16)
where

Iy blade flapping inertia

Q rotor angular velocity



P flapping natural frequency o rotor frequency
e virtual hinge location

Rb blade radius

¥ Lock number

83 pitch flap coupling sngle

However, for this rotor, §3 was zero and the spring constant was evaluated
from the first three terms of equation, {16). The values for p in equation
(16) were obtained from reference 6 and are given as a function of percent
rotor RPM in figure 4, The values for Iy, 2, and By, were obtained by mea-
surement, while the virtual hinge locatich e was found to be between 11 to
15 percent of the blade radius (to be discussed later). The variation of
spring constant with percent rotor RPM with I, = 363.4 kg-m? (268 slug-ft%),
83 = 0, and /Ry = 0.11 is also shown in figure L,

Time Response

[
1

2r glor The rotor flapping response for
% different inputs was investigated by
5 8 kg for 1,2363.4 kg-m? integrating the time-varying periodic
o | 882 (868 sug- £12) with differential equations forward for
I I e/Ry= 11 :
3|z | gek several rotor revolutions., The param-
L g eters in the math model used to gen-—
ol x s erate these time histories are given
x | &3 in table 2 and those unigue to the par-
& ; Flapping frequency ticular case studied are given with
@l rofor frequency the results in each figure. The vir-
S tual hinge location was fixed at 11
ol 0_,‘2 ( [ { [ percent of the blade radius to illus-

o
n
(]

40 80 80 GO trate the model behavior. TIirst, the
percent, rpm .
responge of the rotor in hover was

obtained. Figure 5{a) shows the blade
Figure b.- Blade flapping frequency flapping angles before and after a

ratio and blade spring constant step input of 2° was applied to the
as a function of percent rotor collective control at the start of the
RPM (100-percent RPM = 355.6). secdnd rotor revolution, The gyro

angles and the hub moments are zero

gince the swashplate moment inputs
were taken as zerc for this run. The transient motion of the blade flapping
angles is shown for about one rotor revolution (fig. 5(a)) after which the
coning angle reaches a new steady-state value, TFigure 5(b) shows the
response of the rotor in hover but with an incremental step swashplate roll
moment input of M¢sp = 27 Nm (20 ft-1b) applied at the second rotor revolu-

tion (M¢sp = L1 Nm (30 ft-1b) before the step input). The swashplate pitch
moment and the collective pitch angle were held fixed at M¢sp = -14 Nm
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(-10 £4-1b) and ©_ = 8,57°, respectively. For this case, with moments
applied to the gyro, the hub moments are not zero. The transient response of
hub moments in rotating coordinates (R-frame), gyro angles, and blade flapping
angles are shown in figure 5(b). ‘

Two additional transient responses were calculated but for the rotor in
forward flight with advance ratios of u = 0.212 and 0,485 (figs. 6 snd 7).
Figure 6 shows the transient response of the blade flapping angles, gyro
angles, and hub moments for a step moment input applied about the swashplate
roll axis., The first two rotor revolutions in figure 6 show the steady-state
behavior with M¢ = 41 N¥m (30 ft-1b), M¢ = -1h ¥m (-10 £t-1b), and

= 8,57°, At the second rotor revolutlon, an incremental step input about
the swashplate roll axis of 27 Nm (20 ft-1b) was applied while the swashplate
pitch moment and collective pitch angle remained the same. The transient
motion that followed is shown from the second to the eighth rotor revelution,

o
o

= 184,394 Nm/rad
(136,000 f+-b/rad)

¥ = 4.57
V=0 mifses
o g = 9.5 Nm/rad /sec
oo (T ft-1b/ rad/sec)

Cq= 108.5 Nm frad/sec
{B0a ft-1b/rad ssac)
8,=8.57°t010.57°

Blode number |
flapping angle, deg
(411

o ] — 1 I ] 1 — 1 Qpotge =33.75 rad/sec(90.6% rpm)
e/Rp=.11
3.0 w=0

Blade number 2
floppirg angle, dag
w

‘?

L

w
<
1

Blade number 3
flapping angle, deq
o

‘?

% Collective pitch step
input applied at this
revolution

1 | | | | | |
o] | 2 3 4 5 8 7
Number of rator ravalutions

(a) Response to a step collective pitch input at the start of the
second rotor revolution.

Figure 5,- Transient response df.hover.
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(b) Response to a swashplate roll moment input at the start
of the third rotor reveoluticn,

Figure 5.~ Concluded.

In like manner, ‘the same swashplate inputs were applied as when the rotor was
operating at an asdvance ratio of u = 0.485 {fig. 7). A comparison of the
transient behavior of the rotor at the two different advance ratios indicates
that for the lower advance ratio the response is sinusoidal, whereas for the
higher advance ratio the response shows the presence of higher harmonic terms.
This effect is due to the periodic terms in the differential equations which
become significant at the higher advance ratios.

12



800D —
6000

b

>
<
A
=
=

—
BN
<
<

-8000 ! !

-6000

6000 —
6000 —

Rataiing coordingtes —hub momants

q
<
<
<
<
<

-8000 L 1

—

-6000

Gyro angle, deg
o]

3
[\

¥

Rotating coordinates

n

Blode flappmg
ongle, deg
=]

at this rotor revolution
| 1 L

Swashplate step roil
- rmument input opplied

' 2 3 4 5 & 7 B

Number of ratar revolutions

JrE-di
kg<184394 Nm/rad
(136002 ft-1b/rad}
y=4.74
V= 36m/sec (7D knots}
f1=33.75 rad/sec
(90.6% rpm}
Cp=9.5Nm/rod/sec
(7ti~Ib/rad /sec)
Cy =10B.5 Nm/rod/sec
{80 ft-1b/rad/sac)
M‘f’s =40.7 Nm to 67.8Nm
P (30ft-Ib 1o 50ft-1b]
M = =13 6Nm{-1Cft~Ib)
Bsp

&/Rp = .M

Figure 6.~ Transient response to a swashplate roll moment input at the start

of the third rotor reveolution for u = 0.212.
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Figure 7.- Transient response to a swashplate roll moment input at the start
of the third rotor revolution for u = 0.485,

APPLICATION OF PARAMETER IDENTIFICATION TECHNIQUE

The parameter identification process is useful in redesigning and refin-
ing the parameters of the math model using wind-tunnel or flight memsurements.
The parameters to be determined are those that appear in the coefficients of
the differential equations, such as inertia, spring constant, Lock number,
and damping constant. The general cutline of the identification process is
sketched in figure §. The same input © is applied to both the math model
and the plant ("plant" refers to the helicopter rotor test in the wind tun-
nel). The best values of the parameters of the math model are those that
minimize the difference between the model and plant outputs (§ and F). The
identification process is an algorithm that compares the outputs of the math
model and plant and edjusts the parameter values (inertia, spring constant,

1h



dsmping, ete.) until this difference

is a minimum. What this minimum

should be is egtablished by least-

squares it within the limits of

table 2, and the identification algo-

rithm iterates until this criterion

is reached. It may not always be pos-

sible to reach this minimum or even

to obtain an improvement in the match-

e ing of the model and plant outputs.

. algorithm This report does not address these
— problems, but will make use of the

1 (tunael data} technique in obtaining, where possi-

ble, a better match between the simu-

lation and the measured data. TFor a

detailed discussion of the parameter

Figure B8.- Block diagram of parameter identification theory as applied here,

identification technique. see reference 9,

New values

of parameters

1

L

Math model

+

lc
—~Coo—
—EO=cO)

The identification program had the capability of identifying as many as
36 parameters of the mathematical model, TFor the results that follow, 6, T,
and 10 parameter cases were studied. The choice of parameters was based on
the accuracy to which the parameters were known, the sensitivity of the param-
eters in affecting the response, and whether the parsmeters were linearly
independent. The accuracy to which the parameters were known a priori estabe
lished lower and upper bounds of variation for each parameter, A sensitivity
analysis of all parameters indicated which ones were most zensitive in affect-
ing the response. The linear independence or unigueness of the parameters cal-
culated by the identification program is discussed in detail in reference 9.
Thus the parameters studied here were chosen on the basis of a priori knowl-
edge, sensitivity, and linear independence, Tables 3 and 4 present the param—
eters identified and their nominal values cbtained from reference 6.

The computation time required to identify more than 10 parameters over
several rotor revolutions is large. The approximate time required to estimate
one parameter using one measured data point per iteration was found to he
about 1/20 of a second on an IBM 360/70 computer. This time could vary con-
siderably since the computation time is not a linear relationship of the
parameters estimated. Adequate reconstruction of the measured waveforms for
parameter identification purposes could be achieved by sampling the data every
15° in azimuth. The integration step size was allowed to become no larger
than 2°, In some cases, a larger step size could be used, but the 2° step size
was found to be satisfactory in eliminating significant error accumulation
when the equations are integrated for several rotor revelutions,
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COMPARISON OF MEASURED AND SIMULATED DATA

Discussion of Measured Data

The measured data used to check the analytical model were obtained in
the Ames LO- by 80-Foot Wind Tunnel for a three-bladed, hingeless rotor with
a gyro coupled to the blade feathering axis. Figure 9 is a photograph of the
model in the wind-tunnel test section. This model was used to investigate
the behavior of the rotor under slowed-stopped conditions. For these condi-
tions, the rotor was operated near zero lift., Hence the measurements taken
during tunnel testing are for a lightly loaded rotor at relatively high
advance ratios. The following measurements were recorded: load cell moments
(moments in stationary coordinates 0.914 m below the hub), shaft bending
moments, swashplate moments and angles, and blade angles. Data were available
to check the analytical model and to identify parameters at forward speeds
from asbout 31 to 41 m/sec (61 to 80 knots) and rotor RPM from 148 to 197. A
complete description of the test and data collected is given in reference 6.
For the steady-state cases used to check the analytical model, the rotor was
operated in a locked gyro mode. For this mode, the swashplate was held fixed
at specified angles while the rotor flapping angles were allowed to come to a
steady-state condition. The transient data had been recorded by taking the

Figure 9.- Experimental rotor rig in the Ames 40- by 80-Foot Wind Tunnel.
16



rotor out of trim and then allowing
procedure amounted to a step change
this procedure was to establish the

motion.

units, it became apparent that some filtering of the data was necessary.

it to return to a trim condition.
in the swashplate angle,
rotor transient independent of gyro

This
The purpose of

After the measured data were digitized and converted to engineering

A

low-pass digital filter with a corner frequency of 16 Hz was used to process

the transient data.

The low-pass filter eliminated some of the high-frequency

noise and vibrations from the measured data without introducing any noticeable

phase shift for fregquencies of interest here,
and unfiltered data for a typical transient run to show the quality of the

dats and the results of filtering.

be taken to use the correct initial conditions in the model simulstion.

Figure 10 compares the filtered

In comparing the digital simulation with the megsured data, care had to

The

initial conditions required for the computer simulation were gyro and flap-

ping angles and rates and the moments applied to the swashplate.
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Figure 10.- Typical measured transient data with and without filtering;
p = 0.355, V= 36 m/sec (70 knots).
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gyro angles and swashplate mowents had been recorded for each record taken in
the wind tumnel, the gyro rates and flapping angles and rates had to be
established. The gyro rates and the flapping angles and rates were obtained
by entering into the computer simulation the known values of swashplate
angles, rates, and moments and integrating the equations to steady~state con-
ditions. The flapping angles and rates thus obtained served as the initial
conditions for the particular tunnel record compared.

The next section presents steady-state and transient runs for different
forward velocities and results cobtained by applying the parameter identificam
tion program to the measured wind-tunnel data. TFor a steady-state condition,
the gyro was held at a fixed attitude (locked gyro mode}. For the transient
run, the gyro was free to move but under the influence of moment inputs to
the swashplate.

Steady-State Case: Locked Gyro

Figures 11 and 12 compare measured {discrete points) and simulated
(s0lid line) hub moments for two different forward velocities bub with about
the same advance ratio. The main difference between these two cases is in p,
the dimensionless flapping frequency. The rotor was operated in a locked
gyro mode while the measured hub moments were recorded., In like manner, the
mathematical model simulation was forced with the gyro angles and moments
recorded during tunnel testing while the hub moments were allowed to vary.
The nominal values used in the simulation are given in figures 11 and 12 for
a virtual hinge e located at 11 percent of the blade radius. The math
model shows similar waveforms for the hub moments without the presence of
higher harmonics in the measured data, The vehicle moments are the 1/rev
moments in rotating coordinates and these moments are important in control-
ling the vehicle, The higher harmonics seen in the measured data are asso-
ciated with the vibratory modes of the vehicle. An amplitude difference in
the math model results is apparent for both advance ratios studied. The
largest difference in amplitude cccurs for lower forward velocity with
v = 0,402 and p = 1.62 (fig. 12),

The parameter identification program was applied and a numiber of parsm-
eters were adjusted simultaneously to improve the hub nmoment match. The
results of the hub moment matching obtained after 10 parameters of the math
model were identified are shown in figures 13 and 14, with the nominal values
and estimated parameters for each case shown in tabular form. The inflow,
uniform for both cases, was calculated from equation (A31). The spring con-
stant of the blade was decreased from the nominal value. The ratio of hinge
offset to blade radius (e/Rb) was allowed 4o vary and was found to be at 11
percent of the blade radius. The remaining parsmeters varied from 2 to 3
percent, which was the accuracy to which these parameters were known a priori.
Improvement in the hub moment match is shown in figure 13 after the param-
eters were varied from their nominal value., The large difference between the
measured and math model results for wu = 0,402 (fig. 12) was considerably
reduced as shown in figure 14, A comparison of the identified parameters,
Tfor the two steady-state cases studied, shows similar values of those
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Figure 13,- Measured and identified hub moments -
uniform inflow; p = 0.399, p = 1.45,

parameters allowed to vary, The inertia, tip loss factor, Lock number, blade
sweep angle, collective pitch, gyro coupling constant, and hinge offset were
the same after the identification for the two steady-state cases studied.

Transient Case: Free Gyro

In this section, the math model simulation output is compared with a
transient run recorded during wind-tunnel testing. In addition, the param-
eter identification algorithm was agaln applied to improve the matching of
similated and measured data.

The transient measurements were recorded with the rotor operating in =
free gyro mode and with a step roll moment applied about the swaghplate roll
axis. For the free gyro mode of operation, the gyro is free to move in
response to moments from the blades and swashplate. The step input applied

20



Naminglvalues of parometers
8, =8.57°
By =97
Ca=87
1,=363.4 kg-m? (268 slug-ft2)
1z =363.9 kg-mZ(2684 slug-ft2)
y=4.69

fHib
kg=125214 NT. (92353 LD,
£, £15°

ldgntified parometers
g, =7.97°
Bg =.95
c 2 =85
1,=359.7 kgmZ(265.3 slug-117)
I, =360.2 kg-m*(265.7 slug-f12)
¥y =36
kg= BTESI—— (6%48%)
£, =1.6°
Bp =2.14°
e/Rp =11

4 —-——Meaqasured ddta
¢+ ——Math model
! using nominal
; values from

r’d table 3

LY
Ly | ]

Bg=1225"
&/Rp=.1i
— 4000
2000
o — I~
_ E R\
2 Q —
EC R \
2 220001 N
T |
g L. -4000
]
£
g 4000 —
5 2000+
go -
52 j
2% o2 0
2 - ()
o F N
2000 - >
- -4c00
0 @0

180 270 380

Azlmuth ¥, deg —e

Figure 14.- Measured and identi-

fied hub moments -
o.koz2, p = 1.62,
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figure 15.

uniform

to the roll axis of the swashplate
was accomplished by taking the rotor
out of trim and then moving the
swashplate roll moment control
guickly back %o a trim position.

The transient run was obtained at a
forward velocity of 36 m/sec (70
knots) with a rotor speed of 192 RPM.
The measured dets had been filtered
(discussed earlier) to eliminate the
high-frequency components found on
some of the recorded data. The nom-
ingl values of the parameters used
in the math model simulation are
shown in table 2. Those parameters
unigue for this advance ratio are
tabulated in the figures next to the
measured response.

The measured response {discrete
points) of swashplate roll and pitch
moments, hub moments, and gyro
angles is shown in figure 15. The
mathematical model response (solid
line) of hub moments and gyro angles
is superimposed on the measured data.
Both measured and calculated hub
moments and gyro angles are presented
in rotating coordinates. The swash-
plate roll and pitch moment inputs
used as forecing functions in the
mathematical model simulation are
shown in the uppsr two traces of

The atep change of the swashplate roll moment is seen gt the end

of the third rotor revoclution while the swashplate pitch moment remained

unchanged.

The initial conditions were obtained by forcing the math model

with the swashplate Inputs prior to the step change in the swashplate roll

moment,

Integrating the equations with these swashplate inputs until steady

state was reached produced the initial conditions required to start the math

medel simulsation.

With these initial conditions, the measured and simulated

time responses for this step swashplate roll moment input are shown in the

lower four records of figure 15.
model simulation match the measured data fairly closely.

Hote that the gyro angles from the math

However, the magni-

tude of the hub moments is considerably different for the simulated data com-
pared to the measured data,

Several identification runs were made so that a.different set of param-

eters could be identified to improve moment and angle matching.

Figure 16

shows the matching of hub moments and angles when six parameters of the math

model were allowed to vary.
centage range from their nominal wvalues.

Bach parameter was allowed to vary over a per-

The percentage variation was

21



® 200
|
ar
E o
E |
b= E
= OF=z
53
=4 I
[ Mominol vaiues of parameters
z zoo b I, =.54kg-m2(40slug-ft2)
A L, =363.4 kgm?
2 {268 slug-ft)
2 200~ I, =3639 kg-m2
Ta | {268.4 slug-ft2)
a7
S - ) 2 ) o I 3=.41kg-m2( 3slug-f12)
= o __‘E’ s 0o B AL e LA AT ALy A S LA WA e Y Reaigrl | 5= .21kg-m2{I55lug-H2)
g k] kg = 138752 Nm/rad
245 - . I I | { | L L L | I (102338 f1-1b/rag)
5 200 =457
“  -zool- Cg=108.5 Nm/rod /sec
(80 f1-ib/rad/sec)
Cg = 9.5 Nm/rgd/sec
{000 — ’ { 7 fr-tb/rod fsec)
4000 Mersured dota Rp=5.03m (16 5}
] — e/Ry = .II
5 x E C=.357m {117 ft)
Ex o= 0 B = .97
E E §o=15°
9 §1= 20.1Trad/sec
-4000
2 L (54.2% rpm)
1 -4000 §3=0°
L
a—_ P = - °
.g 4000 p= 1158 kg/m3
80 (00225slug / f13)
oL p= 87
(=t - o
£ o "y
o e Yo ©
® F ‘G‘pm= 10200rpm
kg= 0
-4000 — ks= O

V= 36 m/sses (FOknots}

Rotating coordinates- gyro angies

Number of rotor revolutions

Figure 15,- Compariscn of math model gimulation with measured data, u = 0,355,

22



Nominal parameters Estimated value of parameters

8, = B5T® 8,7 SI7°
g = -943° g = ~1093
By = .97 By = 955
y * 457 y= 40
ks = 138752 Nm/rad (102338 ft-Ib/rad) kg = 97127 Nm/rad (71637 fi-Ib/rad)
{o = 15 {,= 1.8°
——— Math model simulation with
4000 estimated parametars
4000 A Measured dota
v O —
T
el
£5 o
¥
=
E |
L -4000
2
g
k] 4000 —
8 o -
3. OF=
- =
o 2
€ 5 L
4000k
-4000

Rotating coordinofes-gyro angles

Number of rotor revolutions

Figure 16.- Comparison of math model similation with measured dats using
six estimated parameters, p = 0,355,

23



established from the accuracy with which these parameters were known a priori
(table 2). Most parameters were known between 2 and 5 percent, although some
(such as virtual hinge location and spring constant) were known far less
accurately and therefore were allowed to vary over a large range. The hub
moment matching was congiderably improved after only a few iterations, while
the angle matching remained about the same. The phase relation of the hub
moments between the calculated and measured date did not improve. The param-
eters that gave a better match of the time histories sre also shown in
rigure 16.

Figure 17 shows the maitching obtained when seven parameters were allowed
to vary. In this case, all parameters were the same as in the previous case
except for the blade twist, which was held fixed while the flapping inertia
and hinge offset were additional parameters that could be adjusted. The
match of hub moments is not too different from the previous case. Slightly
better phasing of calculated and measured data was obtained for the first
three rotor revolutions. The parameters for this match are also shown in
figure 17.

One additional case was studied. This case differed from the previous
one in that the simulation was forced with the same gyro angles as had been
measured. The same paraméters as for the seven-parameter case were allowed
to vary; the precone angle, advance ratio, and the mechanical advantage con-
stant were slso allowed to vary from their nominal values. A total of 10
parameters could be adjusted by the identification program., Figure 18 shows
the comparison for this case end the corresponding identified parameters are
given in the figure. . The gyro angles are in exact agreement in this case
since the math model was forced with the measured gyro angles. The hub
moment match is similar to that obtained in the previocus case. The identifi-
cation algorithm forced the magnitude of the hub moments to be the same, but
better phasing of calculated and measured response over 10 rotor revolutions
was not obtained. Limitations in the mathematical model or in the measured
data used for the identification might have resulted in the lack of phase
matching.

Discussion of Results

The parameters obtained from the identification program for the steady-
state and transient cases studied are shown in tables 3 and 4, The tabula-
tion of the parameters for each advance ratio shows a congistency in the mag-
nitude of the estimated parameters. For the two steady-state cases investi-
gated, the estimated values of 10 parameter cases were gimilar, For the
transient run studied, some variation in the magnitude of the parameters was
found when a large mumber of parameters were estimated., BSome of the scatter
in the estimated values of the T and 10 parsmeter cases may have been due to
noise present in the measured data. Also, for both the steady-state and
transient runs, the rotor was not lifting, which could make the contamination
of the measured signal by noise more significant. Two other factors that may
have influenced the lack of matching are deficiencies in the mathematical
model and the range over which the parameters were allowed to vary in the
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identification program. Only the flapping and feathering degrees of freedom
were modeled here, But the inplane degree of freedom as well as blade tor—
sional effects may be required in the mathematical model to obtain better
matching of the measured data., The other factor influencing the time history
matching is the limit imposed on the parameters over which the identification
program could search. The limits on the parameters were set by the accursa-
cies with which the parameters could be measured or estimated. An example is
the spring constant of the blade, which is not constant for all rotor REM and
therefore is more difficult to determine. The virtusl hinge location e is
another parameter whose limits were not well defined, These factors will
influence the time history matching obtained,

Note again that the identification in all cases was carried out over the
Tirst 2 or 3 rotor revolutions. But the comparisons of the simulsted and
measured date using the identified parameters are presented for 10 rotor rev-
clutions. This was done to show that an improved match for a very short por—
tion of the measured data resulted in an improved match throughout the entire
transient range of the measured data. Convergence of the parameters to be
estimated was usually obtained after five iterations. Larger numbers of
iterations were performed and larger sets of parasmeters were estimated, but
hub moment and gyro angle matching were not improved.

The identification program also calculates the sensitivity of the output
to each parameter. The sensitivity was defined (ref. 9) as a dimensionless
ratic of the change in the output due to a change in the parameter. For this
model, the outputs are the roll and pitch hub moments and the roll and pitch
gyro angles in rotating coordinates. A 1list of the sensitivities for the
model paremeters is given in table 5. Parameters of high sensitivity are
collective angle (8,), twist angle (6;) of the blade, tip loss factor {(By),
and blade to gyro coupling constant. The sensitivity of the next three param-
eters in order of decreasing sensitivity are Lock number (y) {(or blade
inertia I,,I,), spring constant (k )» and advance ratio {u). Accurate mea-
surements of collective angle, twisg angle, and blade flapping inertia can be
obtained as well as the Lock number (which can be analytically evaluated).
But the values of spring constant as modeled here are difficult to evaluate
since they are not constant for different flight conditions. The best method
for obtaining improved estimates for some of these parameters is through the
use of parameter identification techniques. The information gained from the
sensitivity analysis portion of the identification technique used here can be
very useful in determining where improvements in measurement or the analyti-
cal evaluation of parameters should be made.

It was found from the application of this identification technique that,
to obtain refinements of the parameters for the mathemstical medel, two con-
ditions must be satisfied., First, the mathematical model of the physical
system must be complete except for constant parameters. Second, the values
and the range of uncertainties for each of the unknown parameters should be
specified either from analytical technigues or from measurements. Subject to
these conditions, the identification technique is applicable to the estima-
tion of parameters of complex rotor systems from wind-tunnel or. flight data,
Moreover, the utility of the method is evident in the identification of those
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parameters that cannot be measured directly (such as the eguivalent flapping
hinge spring constant), but are computed indirectly by the algorithm through
the complex relationship between the parameters and the measured response,

CONCLUSIONS

Comparisons of wind-tunnel data for advance ratios up to 0.4%0 with the
mathematical model simulation indicate that the mathematical model derived
here gives a reasonably good representation of the rotor hub moments in
steady-state operation. The match between the mathematical model and the
measured data was improved by adjusting selected model parameters with param-
eter identification techniques. As many as 10 parameters were estimated
simultaneously.

For the transient runs with the rotor operating in a free gyro mode, con-
siderably larger hub moments were calculated than measured. However, gyro
angles during the transient operation were in close agreement with the math
model simulation. An improved match in the magnitude of the hub moments
could be achieved using parameter identification techniques, but phase match-
ing of the time histories over & large number of rotor revolutions could not
be cbtained. More extensive mathematical modeling of the rotor is necessary
to further improve the time history matching.

The sensitivity of the blade response to small changes in the parameters
was calculated. The most sensitive parameters were collective pitch, blade
twist, tip loss factor, blade to gyro coupling constant, Lock number, and
equivalent flapping hinge spring constant.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, June 5, 19Th
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APPENDIY A
DERTVATION OF BLADE EQUATION

The rigid blade equations are derived in three parts: first, the
mcments due to Inertial forces; second, the serodynamic moments acting on the
blade; and third, the mechanicsl moments that balance the inertial and sero-
dynamic moments ou the blade. TFigure 1 shows the gyro-controlled rotor to be
modeled. ‘ :

Inertia Moments

Figure 2 shows the right-handed coordinate system used to. derive the
equations for the blade. The X, ,Y.,7; coordinates define the stationary
coordinates of the blade. The Xg axis points rearward over the tail sec-
tion of the helicopter while the Y, axis points out of the right side of
the hub. The Z, axis points upward following the completion of the right-
handed coordinate system. The coordinates Xp,¥p,Zy rotate at angular veloc
ity £ of the rotor whose reference point is taken from the stationary axis
Xg. The positive directions of the flapping angle R, inplane ¢, and fea-
thering angle 0 are defined in figure 2.

" In developing the inertia moments, the following definitions and assump-
tions were made:

(1) only the first flapping mode is considered; it is represented by
rigid blade motion about a spring-restrained virtual hinge located a distence
e radislly from the hub center.

(2) Blade feathering (pitch) is represented by rigid-body torsional
motion,

{3) A1l deflection angles (8, 8, z) are small.

- (4) The inplane degree of freedom is not represented, -

The B frame (Xb,Yb,Zb) is def'ined by the rotations of B, £, and 6,
The equations are develcped in the B-frame since it represents the principal
axes of the blade. The equations sre then transferred to the R-frame (X,
Y.a5, ), which is also referred to as the shaft axis system of the blade.

The rotational equations of motion in the B-frame (blade frame) are
obtaine? by expanding the angular momentum eguation for a rigid body (see
ref, 10):

Mx = wax + (Iz - Iy)wywz ’ (A1
My = Iy“’y + (IX Iz)wxwz (VAE

where the effect of hinge offset e will be added later, To further expand
these equations, the angular velocities and angular rates must be expressed
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in terms of the coordinates shown In figure 2, Since only the feathering and
flapping equations are deVegoped here, the angnlar velocities Wy s Wy » W7 and
the angular accelerations wy and are needed. In developing these terms,
small-angle spproximations are made and terms small compared to 1 are dropped,
vhich gives (ref. 11)

Wy = 8B - é; + 9 )

= 08 - QB - [ o
wy _ﬂ CB B"" [ ( (A3)
w, = g+ B + ¢ J
a, = 98 - Br + § - BE )
) . . . W > a4
w, = 98 - 8CB - QB - B+ L8 + 8 J

Equations (A3) and (Al) are substituted into (A1) and (A2) and then expanded.
In expanding these equations, some terms will cancel. Terms that involve
products of three or more angles are dropped from the expansion since they
represent higher-order effects that are not investigated here. The equations
for the feathering and flapping moments are then

- LLd . .. - 2 L] - -

M= T(8+ a8 - 80 - 8o) + (T, - T )[a%(6 - ¢B) + a(-B + 267) - 28] (A5)
- T - L . L e 2 . - - .-l

M o= T [-B+al6-cs-z8)+zo+zol+ (I -1)[a%+0al6+ 8- cB)+o]

(A6)

which define the feathering and flapping moments in the blade frame. The
inplane moment eguation was not retained in this analysis, although the
inplane degree of freedom is present in the M, and eguations, This was
done to model the forward sweep L, of the blade. Since no inplane motion
was sllowed, the following substitution is made in equations {A5) and (A6):
L =1Ly =0, =0, Also, for later use, these equations are defined in

terms of their reaction moments Mxinertia and My, o tia which are given by

the negative of the M, and equations. The equations in the B-frame
that result from the above subgtitution are

- T (% s _ _ 20a _ o
My:nortia = ~Lel + 08 - Bz ) - (T, Iy)[Q (6 - ¢ 8) = gl (A7)
- "_ ._ - _ _ 2 l_ -
Myinertia = Lyl8 = #(8 = ¢ B)] - (T, - 1 )[0% « alé - c B)]  (a8)
To the flapping equation (A8) must be added the term due to the effect
of the hinge offset e, The contribution to the flapping equation of the
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hinge offset is given by (3/2)I.[e/(Ry-e)]n28 (ref. 12) where e is the.
hinge offset and Ry, the blade’ radius, If the effect of the hinge offset is
included in the flapping equation, the inertia moments in the B-frame are

= "_ -— 2 "— - B —-— . 2
Mesnertia = ~Ix0- (I, Iy)ﬂ 0+ ¢ B (Ix+Iy T, ek (1 Iy)con B (A9)
= . _ o— _ 2 _ _ . i - 2
Mﬁinertia Iy8+(Ix*Iy IZ)COQB (Ix Iz)ﬂ B (Ix+Iy Iz)ﬂe+ 2 Iy Rb_e g

{410}

The above equations will now be trensformed to the R-frame (or shaft axis
system) since the aerodynamic and mechanical moments are developed in this
reference frame. The transformation between the B and R frames for small
angles is given by

'51 -1 z ™ (A l)
= 1

With the application of the transformstion eguation (A11), the inertia equa~
tions (A9) and (Al0) can be expressed in the BR-frame. In expanding the

equations in the R-frame, the approximation I+Ls = 1, Tyg, << I, and drop-
ping the I,f,8 term in the Mfinertia equation (because it was found to be

small compared to the other terms) gives

_ s _ e 2 ) . _ .
My: pertis Ixe+(1x+1y IZ);OQG (1Z Iy)Q e+(1X Iy);os (Ix+Iy I,)08
- 2g. 3 e 2
HI T e 0% 5T ¢ R 0P (a12)
- T A 2_ 204 3 e 24 _ _ A (T - 2
Mys ortia Iys (Ix+IygD IZ)Q B 5 Iy — 228 (zx+1y IZ)QB (IZ Iy)goﬂ 6

(A13)
Equations {A12) and (A13) define the feathering and flapping moments of
inertia in the BR-frame.
Aerodynamic Moment

The aerodynamic moment is developed from the normal snd tangential
velocity components at the blade. The agsumptions made in developing the
aerodynamic moments are:

(1) The aercdynamic center of the blade is at the gquarter chord.

(2) The inflow angle is small.
(3) Two inflow models were used - a uniform and a nonuniform model,
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N (4) The blade element 1ift

1 Blade chord axs poefficient curve is linear.
{5) T™he reverse flow region of
C @ l“P ' the votor was taken from 225° to 315°
. azimuth.
‘\\\ Relative wind azis
\\\ ’/,’ff/Jﬁi;”” The coordinates used to develop
Resitanl ™3 AS the aerodynamic. moments are shown in
3 X = id - sketeh {(a). The aerodynamic moment
-— b about the flapping axis is given by
B=a+q T
Cd G Bll
My o -CI e qr dr {(a1h)
g

In the reverse flow region, the
limits of integration of equation
Sketch (a) {A14) were changed to account for

the loss of 1ift in this region.

The reverse flow region was taken

from an azimuth angle of 225° to 315°.
In this region, the lover limit in the aerodynamic moment equations was set
equal to the advance ratio u. Although the exact reverse flow region in for-
ward flight is given by a circular disk of diameter u (for the blade radius
normalized by Rb), this approximation was used since it was more easily
implemented for computational purposes. To expand equation (A1l), expres-
sions for the tangential velocity and perpendicular velocity components must
be obtained. The dynamic pressure is given by

U2 2]
q=p—§[1 +(ﬁf—)] , (A15)
i

Since (Up/Up)2 << 1, equation (Al5) becomes

q = p(UZ/2) (a16)
From sketch (a), the angle of attack o of the blade is
o =8 -4 (a17)
The inflow angle ¢ is
¢ = tan 1 {UL/Up) (418)
but, for small ¢, a small-angle approximation is

b = UL/O;, (a19)

For a symmetrical airfoil,
¢ =c, = aq (A20)
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Substituting for o in equation (A20) yields

U
c = a,( - ——R) (A21
n UT

The tangential and perpendicular velocity components required in equa-
tion (A21) are given by (ref. 11)

UT=QRb[%1;+i;:£—:—l&+u;cosw+usin¢] (pa22
UP=ﬁRb[£-g—‘P-§-lé+rR;cs+ B costb-l] | (A23

Neglecting the offset hinge aerodynamically and substituting ¢ = Lo & =0
yields the tangential and perpendicular velocities:

Up = an(§;-+ ug cos ¥ + u sin é) (A2h
U=Q(—£-—é+£—-c8+u8cosw—k) (AR5
F Rb 2 Rb 0
Now let
X = r/Rb
then r = Rx (26
dr = Rbdx

The aerodynamic moment about the flapping axis can now be obtained by
expanding equation (Al4). Substituting equations (A16) and (A21) into (A1l)
yields

caa BﬁRb
MYaero =~ —%_- (QU% - UPUT)r dr (A2T
a

The pitch angle & represents the sum of the following angles:

8 = 6(x) = 6, * ecyc + x81 + B tan &3 (A28

©
angle, ©; is the twist angle of the blade, and B tan 8; represents the con-
tribution due to a &3 hinge. Equation (A27) can now be expanded by
substituting equations (824h), (A25), {(A26), and (A28):

where @, is the collective angie of the blade, chc is the cyclic pitch
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Ex+ucocos $+u sin ¢)2(90+9cyc+x81+8 tan 63)

-cpaR;Q2 B£
Myaero = 2 j
e/Rb

. X .
—(x+u§ocos Y+u sin w)(ﬂ B+XCOB+uB cos wwko-lxx cos w—kyx sin @i]x dx

{a29)

In the above equation, either a uniform or a nonuniform inflow model can
be used, The inflow A is expressed as

= + i
A=A+ A x cos P+ Ayx sin ¥ {A30}

where X, represents the average inflow and Ay and A represent a linear
variation of inflow across the disk. The above equation for X was used to

integrate the aerodynamic moment equation (MYaero) along the blade span given

by equation (A29). For the uniform inflow calculation, Ay and A, were set
to zero. The magnitude of Ay for a given forward flight condi¥ion was then
calculated from the following relationship (ref. 12):
{1/2)cy
A, = Hog - (A31)
w(u? + 22)1/2

For the nonuniform inflow calculation, A , Ay, and A, were estimated from
measured wind-tunnel deta for a particular flight condition. Equation (A29)
is integrated from the hinge offset location to the tip of the blade (or tip
loas factor since the equation has been normalized by x = r/R), and meking
use of the definition of the Lock number

L
cDaRl:
Y = -3 (A32)
Yy

gives, for the aerodynamic moment about the flapping axis,
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YIIQZ 1 z et u ] Bi PR | N
M.Ya.ero=_ D "5 T‘L'_RE +§(Cocosw+51nw)—3-§—§g— R
B3
[ (T F§)+u(cos U“'Z sin IIJ)( 3 3R'b) (z ot eos 2y+sin 2¢)
-G ) i
> 3 5 - )ﬁ;‘ +2u(§ cos Ysin Y — 3 3Rh
B2 B3 <
-t - ol
Bq 4 'B3 3
+2u(€ocos Y+sin w)(—-ﬁ—‘ - .E.S_.%.).uz(% _ _:2L, cos Etlﬂ‘cosin 21])(-—-%— _ 3%3—)]61
I
+ Bg - e +2u{z _cos ytsin p)f—= B3 1 ' :1_ cos 20+ )
Ty T OLREfTEUAG, 3 3Rb - Z; sin 2y
B 2 B, 3 fB2
x(—-—-— - Z‘%g)](eo"'ecyc)*‘[(% - -:;R—g)+u(?;ocos Y+sin xp)(—sé - 5—;—%) 10

Bh B3
+"ﬂ'-eucosw+(co in Y+ 2)| & *-i)\
T ﬂﬁg H smsuntptgocoszp 3-3Rg -

3] PN

+ B'E- el} . ( 2 . BE ea-
_T - FRE sin P+ulsin Y+Z_cos ¥ sin v) -5 - B_Rg_‘ Ay _ (A33)

To simplify this equation in the main body of the text, the following
definitions are made:

YI::QZ B2 2 B3 3 )
2 2 ER.% ’ 3 3Rt3>
. (A3L)
B el BS g3
BLh = - BS = = v ——
RR LI >=75 5R J
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c1{y) = coBh + u(cés U+ cosin P)R3 + %-uz(;o + g cos 20 + sin 29)B2
ce(y) = Bl + 2 (r cos ¥ + sin ¢)B3
0 Q o
c3(y) = B5 + Eu(cocos ¢ + sin p)BY + UZ(% - —é— cos 2¢ + ¢ sin 2111)]33
ch(yp) = BL + 2u(z;ocos ¥ + sin Y)B3 + uz(%- - %- cos 2y + L sin 2¢)32 > (A35)
c5(y) = B3 + p(cocos Y + sin y)B2
c6{y) = Bk cos ¢ + uf{cos ¥ sin ¥ + Z_,OcoszljJ)BS
c7{y) = BY sin y + n{sin?y + g cos ¥ sin ¥)B3 ‘

The aerodynamic moment about the flapping axis can now be writiten in a
more compact form by use of equatioms (A3k4) and (A35):

My = ~KL{-C2(y)B + [-C1(y) + chl¥)tan 8518 + 03(v)8; + Ch(b)e,
HChp)e o+ c5(p)r, + c6(yla + CT(¥ ) (A36)

For the reverse flow region, the lower limit of equation (429) is equal
to p, which results in a change of the e/Rb terms in equation {A34) to the
advance ratio u. In the simulation of equation (A36), the appropriate coef-
ficients were substituted when the retreating blade was in the reverse flow
region.

The serodynemic moment sbout the flapping axis is given by egquation
(A36). The aerodynamic moment sbout the feathering axis was found to be very
small and therefore was not included in the analysis.

Mechanical Moments

The inertis moment sbout the feathering axis of the plade is balanced by
gyro moments and the flapping moments that couple into the feathering axis
due to the forward sweep (f,) of the blade. In addition, spring and damping
moments about the feathering axis must be ineluded. This moment balance is
established in appendix B where the complete gyro equations are developed.
For the flapping degree of freedom, the inertial and aerodynamic moments are
balanced by the spring restraint of the blade with spring constant kB' The
mechenical moments about the flapping axis can then be written as
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My nech = Eg(B = 8,) (a37

where B and 8, are the flapping and precone angles of the blade. The sum

of the inertia, aerodynamic, and mechanical moments. about the flapping axis

must sum to zero to obtain a moment balance., The resulting equation for the
Tlapping axis is then

e 2.- o) _3_ e 2 _ - ._ - 2 - - ,
IyB-(Ix+IyCO IZ)Q B+ 5T 0°B (IX+IY Iz)sze (IZ Iy)caﬂ. 6-K1{-C2(y) 8

¥y R~

+{~CL(p)+Ch(y)tan 53]s+c3(m)el+ch(\b)eo+ch(¢)ecyc-»cB(w)Ao+cs(wnx+07(w)1y}
+kB(B—Bp) =0 (A38]

This ccmpletes the development of the blade equations. The sbbreviated nota-
tion for the aerodynamic terms in equation (A38) was used to simplify the
equation in the main body of the text. In the remsinder of this appendix,
the flapping equation is developed for any number of blades from which the
equations for the particular three-bladed rotor are cbtained. The flapping
equation (A38) can be written in general terms for any numbher of blades as

Tou L 2_ 20 # 37 _B_ 24 _ _ a5 (T - 02
IyBi (I;Iya;o Iz)ﬂ By 5 IY e OB (IxfIy Iz)szei (IZ Iy);on N

..Kl{-ce[w+(i_1) -g%]éi-01[1p+(i—l) g—%]si+ch[¢+(i-l)- Q—S]Bitan 83

+C3[1D+(i-l) '2‘%‘]91+Cll[q)+(i_1) —2%](8.0+ecyc)+cs[w+(i-l) g}g_]%

. 21 ) 21 ' . .
+c6[¢+(1-1) —g]xx+07[w+(1-1) —};]Ay}-rkatsi-sp) =0 i=1,2,...,b {(439)

where b 1is the number of blades. The feathering sngleg in equation (A39)
are expressed in terms of gyro coordinates 8, and 83. The feathering angle
8; 1s transformed to gyro coordinates &y and &, by

6; = Cz[ﬁlcos(i-l) %‘- + azsin(i-l')@%] ; i=1,. . .,b {ak40)

The derivatives of the feathering angles are obtained from equation (ALO)} by
differentiation. Equation (A39) can now be expressed for a three-bladed
rotor by varying the index i =1, 2, ., . ., b where b = 3, and by transform-
ing the feathering angles and their derivatives with equation (Ak0). The
complete flapping equations for the three-bladed rotor expressed in terms of
the flapping angles and gyro angles are given by
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2 3 & 2 (T - 2
I 81 (1 S 2-I_)a%B1+ 3 Iy fie © B1—(Ix+Iy—Iz)90251 (1, Iy)COQ C28y

vyI &
- —Ji-—-[ [E-lf- + 2 (g cos Y+sin \[})BB] B—[C Bh+n{cos y+g sin $)B3

=]

1 1
2 - i A= . = 2
+ 5 n?(g *g cos 2¢+sin Ew)B2]81+[Bh+2u(t;ocos prsin 9)B3nAZ - 5 cos 29

+§osin Ew)Bé]Bltan 53+[35+2u(COCOS P+sin w)Bh+g2(% - %—cos 2w+cosin Ew)Bé]el
+|Bh+2p{z cos P+sin ¢)B3+u2(£-» L cos 2Y+7 sin 2@)32](9 +6 )
P 2 2 o o cyce

+[B3+u(cocos ptsin w)BE]kd+{Bh cos p+ulcos ¥ sin w+c0cosz¢)83]hx

+[BL sin ¢+u(sin2w+cocos ¥ sin 1P)B3]7\y}+k8(51'5p) =0 (Ab1)
. 3 1 . V3 .
2 2 = = nZ2a. _ - - — —
Iysz-(Ixﬂy:D-IZ)ﬂ B+ 5 I, R — %8s (IX+Iy Iz)ﬂcz( 5 61t 5 52)
1 /3 v a2
_(Iz*Iy)Coﬂ2cz(% 5 81+ —5.5 ) {—— + —-[; cos {(y+120° ) +sin( w+1200)]B3}

XEZ-{zoBh+u[cos(w+l2O°)+qosin(w+12o°)]B3+ %‘p2[§0+§0c05 2(y+120°)
+sin 2(w+120°)]32]82+{Bh+2u[cocos(¢+120°)+sin(w+1200)]B3
2

+u2[£ -~ %-cos 2(4+120°)+ _sin 2(w+120°i]32}82tan 63+{BS+2u[cocos(w+l2O°)

+5in(+120°) ]BU+y? [5-- % cos 2(w+120°)+; sin 2(w+120°i]33}81

+{Bh+2u[cocos(w+120°)+sin(w+1200)]B3+u2[%-- %~cos 2(w+120°)+cosin 2(¢+1eo°ﬂ

XB2](60+chc)+{B3+u[EOCOS(w+120°)+sin(w+lEO°)]BQ}AO4{BM cos (¢+120°)
+u[cos(w+120°]sin(w+120°)+Cocosz(¢+1200)]B3}lx+{Bh ain(yp+120° )+u[sin? (y+120°)

(8,-B } = 0 (ak2)

+§Ocos(¢+1200)sin(¢+120°)]B3}l%) g
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31 & g2 g 434
7L, 5 ® 33_(1x+1y_xz)902(- > 81— 3 5%)

yI Q2
~(Iz-Iy)chZCQ(L %—51- i%faé)____%%__ (-{E% + %-[Cocos(w+2h0°)+sin{w+2h0°)]BBI

T B.- 2. 2
yB3 (I;Iyzo IZ)Q Byt

xB 3~ l:OBh+u[cos(w+2ho°)+;osin(w+2ho°)]B3+ %—u2{;0+;0cos 2{y+240°)
+sin 2(¢+2u0°)]32}sg+ IBh+2u{;ocos(¢+2ho°)+sin(¢+2ho°)]B3

+u2[%-_ %—cos 2(w+2h0°)+cosin 2(w+2ho°)]32,egtan 53+[Bs+2u[cocos(¢+2h0°)

+sin(¢+2h0°)]Bh+u2[%-— %-cos 2($+240°)+z_sin 2(w+2ho°}]33} 8,

+{Bh+2u[cocos(w+2uo°)+sin(¢+2ho°)]B3+p2[% -‘% cos 2(y+240°)+¢ _sin 2(w+2ho°i]

szl(eo+ gyc)+{33+u[cocos(w+2ho°)+sin(w+2h0°)]Bz}xo+{Bh cos (p+2h0°)

. +ufcos(+240° ysin{yp+2L40° )+1‘;c}c:c:as2 (p+240°) ]BB}AX+ BU{sin(y+240° )+ sin2 (y+240°)

+Z cos (g+240°)sin{y+240°) ]B3}J\y) +kB( Bg—ﬁp) = 0 (A43)
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APPENDIX B
DERIVATION OF GYRO EQUATION

The gyro of the rotor modeled was located at the top of the rotor head
and was operated at about 10,000 RPM. The gyro and the rotor head are showm
in sketch (b). This sketch is shown here only for mathematical modeling pur-
poses and does not necessarily represent the exact mechanical connection of

the gyro with the rotor. The X ,Y¥.,
Zg coordinates represent the sta-
tionary coordinates of the rotor.

' _— Since the body motion of the helicop-
Y ///" ter was not modeled, the Xg,Y5,Zg

coordinates also serve as the inertial
coordinates for the development of the
gyro equations. The Xp,Yp,Zy coor-
_ dinates sre the rotating cocrdinates
Tyt or the shaft axes of the hlade while
: the Xu,Y,.,%, coordinates are the
coordinates of the gyro at an angle
Yo from the X,,Y).,7, frame. One
more coordinate system must be
X defined for the gyro itself since it
rotates at a much higher speed than
Sketch (b) the rotor. This coordinate system is
defined by the Xg,Y¥p,%y axes system.
With the definition of these coordinates, the gyro equations and the equations
for the gyro-blade interaction are derived.

Zg Z5. 2y, Z.

The rate of change of angular momentum of the gyro is given by Newlon's
second law:

dﬁG _
=) "% (B1)
S N
where the angular momentum of the gyro is
HG =T . wG/S (B2}

Since no body motion was allowed {as mentioned in the definition of the coor-
dinates), the stationary frame Xg,Y¥5,Z5 serves as the inertial frame in the
development of the gyro equations.

The rate of change of angular momentum of the gyro with respect to the
C frame is expressed as

: aFoG/S _ . ~
¢ " | Tat |, g X Igt vy = Mg (B3)
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To expand equation (B3}, the angular velocities between reference frames
must be established, The angular velocity of the gyro with respect to
inertial space is

Bs/s = Ygse * Ye/r * Yrss (B4)

The angular velocity of the € frame with réspect to inertisl space is

warg = Yo/r * Brys (B5)

The angular velocities in equations (B4%) and (B5) are

K
Bg o = [31582,83]] 0 (56)
o)
f%l
Gy m = [81582,85]] 52 (B7)
L0
Fb
5 js = (81582583 0 | (88)
i)
The transformation between the C and G Iframe, considering only small
angles, is
eyl |2 0 -8 &1
gf=1o0 1 81)| ez (B9)
c3 82 =81 1|l es

Equation (BUW) can be expressed in the C frame by use of equations (B6),
(B7), and (B8) and the transformation equation (B9):

= [ey,05,c3]] 85 + 08 ‘ (B10)
W

¥a/s
c

where wg = w + £ and terms such as 3152 and 6132 are considered negligible.

The angular rate ®

o/ ©am be obtained from equation {B10) by

differentiation:
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§; - 2b,
= [31,82.83]} 8, + 28 (B11)
0

5]

G/8

Equation (B5) can also be expressed in the C frame by use of equations
(B7) and (B8) and transformation equation (B9):

5, - a8,
[61,62,63] (’52 + 951 {Blg)
1)

Yass =

Since the gyro is modeled as a disk, the dismetrical inertias are equal,
defined as Igp = Iy = I;. The inertia through the center of rotation of the
disk is I3. The inertia distribution of the gyro is then

IG 0

= [31,8,03][0 I, o[22 (B13)
0 0 I4]] e3

o

ey

g

ol

Substituting the above equations for the angular velocities, rates, and
inertis distribution into equation (B3) gives the following equations for the
EyTros

L3 2 L] _
L6 + (IgﬂmG - I8 Y8, + (IgmG - ean)az = Mg, (B1Y4)

Igoa + (I3fug - Ian)a2 - (Taug - 2QIG)61 = Mg, {B15}

For a high-speed gyro, wg will be some multiple value of the rotor
speed . Hence let

wy = kpf {B16)
where kg is some multiple of the rotor. speed., Substituting equation (B16)
into (Blﬁ) and (Bl15) gives for the gyro equations:
< 2 2 - e
Iph + (T30 kp - I8 )6 + (ngRQ - :QIG)Sz = Mg, (B17)
K 2 - 2 - _ oo
Isd2 + (TI30%p - 1,0%)6; (T3kp0 - 201,08, My (B18)

In the following section, the external moments MGX and Mg of equations
(B17) and (B18) are developed. v
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Zs,2¢.2;

/ Forward

¢“5§5

Spring and djamper
in stationary frame
about pitch axis,

Spring and damper
in stationary frame
about roll axis

Sketch (e)

=\)2—C

My

First, the pilot's swashplate
roll and pitch meoment inputs (v,
and v,) and the swashplate damping
and spring terms are developed and,
second, the exeitation of the gyro
by the blade is derived. The sum
of the above moments in rotating
gyro coordinates constitutes the
external moments MGx and MGy. A

sketeh of the gyro disk with the
springs, dampers, and moments
inputs is presented in sketch {e}.
These moments were measured in the
stationary axis system (Xg,Ys,Z¢)
and must be transferrved to the
rotating gyro axis system (X,,Y,,
7).

The -moments in the stationary
axis system due to pilot. input snd
the spring and damper are

(B19}

(B20)

The sbove equatlions must now be transformed to rotating coordinates since all
equations in this development are expressed in the rotating coordinate system.
The transformation between the stationary and the rotating coordinates .is

given by

5]

S2

sin(w+¢o)
—cosf¢+¢o)

cos(w+wo) ¢

(B21)

sin(¢+¢o) ¢

or, between gyro angles and swashplate angles, by

sp _ sin(y+y )
ba, ~cos (i)

cos(¢+¢0) 8y

(B22)

sin(w+wo) )

Equations (Bl9) and (B20) can be transformed to rotating coordinates by apply-

ing transformations (B21) and (B22).

In addition to the pilot input and the
spring and damper moments, the excitation of the gyro by the blade Mg

XCXC

and Méxcyc must be added to give the complete set of applied external

moments for equations (B1lT7) and (B18):
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1l

visin{y + ¢o) - vycos(yp + wo) + 90552 - Csél - K551 + Mexcxc

Mey
(B23)

Mcy‘ vicos(y + Wo) + vosin(y + ¢O) - chal - 0552 - K552 + Mexcyc

(B2L)
The gyro equations can be written from equations (B17), (B18), (B23), and
(B2h) as

IG31+(I392KR—IGQZ)61+(IgﬂkR-291G)62-90562+0851+K86I-Mexcxc

= vlsin(w+wo)—v2cos(w+wo) (B25)

an 2 % e
IG52+(139 kR—IGQZ)62-(I39kR—291G)G1+90551+0552+K552‘Mexcyc

= vlcos(w+wo)+uzsin(w+wo) {B26)

The only remaining terms to be expanded 1s the excitation of the gyro by
blade Mexc,, and Mexcyc° These are the moments in gyro rotating coordinsbes

(X,,Y,) vwhich are transmitted through mechanical linkages from the feathering
axis of the blade. The moment sboubt the feathering axis for one blade in the
rotating blade coordinate (X.,Y,,Z,) system is given by {ref. 13)

M k 0 - ¢,.8 (r27)

= + + M -
exc i;01‘43"111ec:h coMyinertia Xinertia 8 8

The moments My and My. . are the mechanical and inertia mcoments
mach inertia

that couple into the feathering axis because of the forward sweep ¢, of the

blade., The inertia moment a@bout the feathering axis is given by Mxinertia'

The kg8 and ceé terms represent the spring and dsmping effects about the
feathering axis. Equation (B27) is expanded by substituting for the inertia
and mechanical moments from equations (Al2), (A13), and (A37). In the expan-
sion, the approximation is made that 1+§§ = 1 and I,L, 1s small compared to
other terms in the eguation:

= - ll_ .-’ _ 2 _ - - - _ 2 _
M. I_f-c 0-(I_ Iy)ﬂ 6-k, 6 (Ix+1y IZ)QB+(IZ Iy)coﬂ B+cokB(B BP)
(B28)
The moment equation (B28) is expressed in the rotating system of the blade
(¥.,Y,) and is now transferred to the gyro axis system (X;,Yz). The accom-

panying sketch (d) shows the three-bladed rotor treated in this development
with the rotating frames of the blade (X,,Y,) and the gyro (X,,Y.).

. The moment Mgy, about the feathering axis of each blade (sketch (d))
will be resolved along the (X,,Y,) axis and then transformed to the (Xg,Y.)
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Blade Mg 3 Blade No. 2

-,

'82

\h?.;ctﬂleﬁ\ ¥

c

Biade No. |
xr

Sketeh (d)

axis through a mechanical linkage constant Cy;. The excitation!of the gyro
by the blade is then given by

Gz[ (31,91)--3- (32,92)-~—M (33,93)] (B29)

= [‘/2‘_ ex (B2,85) - % (53,93)] (B30)

MGKC XC

MEX.Cyc

Substituting for each moment in equations (B29) and (B30) from (B28) with the
appropriate feathering and flapping angles for each of the three blades gives
the following moment equations:

La L 2 1,1
Mexcxc CZ["I (91 03) (81- 5 Bo- > 83)_(Iz_-1ym (91" 5 89— 5 93)
l ) l . l .
...ka(el-. > 62_ > GED_(IX+IY_IZ)Q(51_ 5 Bo- 5 33)
- 2fp._La L [ - L - 1 ]
+(Iz Iy)coﬂ (81 5 Ba= 5 33)+.;0k8 {81 BP)... 5 (By BP)_ > (BB-BP)

-{B31)
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‘/§ . e - .
Mexeyo = 2 02{-Ix(92-53)-09(92-63)-(IZ-—Iy)Qz(82—83)-1{6(82_63)

-(IX+Iy—IZ)Q(é2~é3)+(IZ-Iy)r:ORZ(82-83)4'(:01{8{(Bg-ﬁp)-—(ﬁg-ﬁp) 11
(B32)

The feathering angle (i =1 2 ,3) and its derivatives are now written in
terms of the gyro coordlnates (1 = 1,2)., The relationship between 01
and 8; and the derivatives can be obtained from equation (A4O). Applylng
this transformation to equations {B31l) and (B32) gives the excitation of the
gyro by the blades in gyro coordinates as:

[#3)

- 3 2 3 3
Mexcy, = = 5 C31,81- 5,081~ 5CH(I T S9261- 5%, C56

.

B L 1 2 L 1
_CZ(IX+Iy—IZ)Q(Bl- 5 Bo- 3 83)+CQ(IZ—Iy)?;OQ (81— 5 B2~ 3 83)

1 1

+c2k5[(31-sp)- 5 (Bz—Bp)— 5 (Bg-Bp)] (B33)

3 20 % 3 3
M&XCYC = - —2-~C9_Ix52- 2 90252- 502(1 —I )Q 62— Ek 0252

3 . Y3

- —% Cz(Ix+Iy-IZ)ﬂ(82—83}+ "§'Cz(IZ~Iy)EOQZ(Bz-B3)
V3
+ =5 Cokpl(Bp-8 )-(E3-8 )] (B3k4)

Equations (B33) and (B34) are combined with equaticns (B25) and (g26) to pro-
duce the complete gyro equations for a three-bladed rotor:

(IG+ %cirx)'éﬁ 2 0 C281+C_b1+(T90%k -1 92)5,+ g_cﬁ(rz-ry)nzaﬁ. 2 1 C261+K 8,
+(I3m;R-2MG)éz-mcsaz+cz(lx+1y-lz)n(él- % Bom % éa)-cz(IZ-Iy);ng
“(e1- 3 8- % B3)~Cat ey [(B1-8 )= 5 (Bo=8 )= 5 (85-8)]

= vlsin(w+w0)-vzcos(w+¢o)

(B35)
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302+ Vi 3. 02 % 2 2 302 25 4 3 2

(IG+ 3 CzIx)62+ 5 090262+0562+(I3Q k-0 IG)62+ §uCZ(IZ—Iy)Q 82+ 5 koCa8a+K 82
- 3 )

- - — - p— — ——— - 2 -

(T30kp-201)81+0C 81+ =5 Co(T T T )0(Bp-B3)- —5 Co(T T )t 0%(B2-B3)

-
- ‘%’CzEOkB[(Bz—BP)m(Ba-BP)] = vlcos(¢+w0)+vgsin(w+¢o) (B36)
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APPENDIX C

HUB MOMENT CALCULATIONS FROM MEASURED DATA

This appendix develops the transformations necessary to change the mea-
sured shaft bending moments and load cell moments to moments at the hub. The

Hub- point of which blades
gre gttached to shaft

Shaft

shaft bending moments snd load cell
moments were measured during wind-
tunnel testing at some digtance below
the hub; the moments obtained from
the math model simulation were cal-
culated at the hub, Therefore, it
wag hecessayry to transfer the mea-
sured moments to the hub in order to
have & common point of comparison
between measurement and simulation.
The coordinate system used to cal-
culate the hub moments is shown in
sketeh (e).

e, h
i The load cell moments were mea-
i sured in stationary coordinates a
weurs A aistence hrg_ below the hub, while
B S x‘/// the shaft momenbs were measured in
: rotating coordinates a distance hg
below the hub, In calculating the
Sketch (e) moments at the hub in rotating coor-
dinates, the following notation and
positive direction of moments are
adopted:
Mo, rotating load cell roll moment {positive left roll)
Ngc = = (c1)
Lyicy load cell pitch moment (positive nose-up)
rﬁxr rotating shaft bending moment (positive left roll)
}7@ = = (Ce)
MYr shaft bending moment (positive nose-up)
L

The desired hub moment in rotating coordinates is defined as

L8



rotating hub roll moment (positive left roll)

Mg hub pitch moment (positive nose-up)

The force acting through the hub is defined as

rotating hub force aleong Xr

Foo= ' = (cl)
Fﬁy hub force along Yr

The following moment balance can be written from sketch (e):

it
s

1l
=
+
=
~
iy

]

(c6)

Equaticns (C5) and (C6) can be éolvgd simultaneously for the. moments at
the hub from the known measurements of M% » M, h_ ., and h_. The hub moments
. . C s LC 8
are then given by

hre My = hg Mo,

= (cT)
Bx thZ - hSZ
" bre My, - Bs Mucy (c8)

The load cell moments expressed in equations (C7) and (C8) are in the
rotating coordinate system. BSince the measured load cell moments were
recorded in staticnary coordinates, the transformation between the rotating
and stationary coordinate system must be obtained. This transformation, as
indicated in sketch (e), is given as

Ty cos U gin ¢
rp{=|-sin ¢ cos ¥ {cg)
T3 0 0

Applying the transformation given by equation (CQ) to the MLgx and MICY

terms in equations {(C7) and {C8) produces the final form of the hub mcments
in terms of the measured moments:
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hLCzMxr - th(MLCxCOS o+ MLcysin )

M, = : . {c10)
BX hLCZ = hSZ
hpg My, - hg, (=M sin ¥ + Mpg cos V)
Mg . = T h ' (c11)
¥ LC, ~ sy
\ 2.2, In the mathematical model simiae

Blode No. 3

Blade No. 2

Xs

Blade No. !

Sketch (f)

lation of the rotor, the hub moments
were calculated from the blade flap-
ping angles and blade spring con-
stant., Sketch (f} shows the
coordinates usged to obtain the hub
moments in the rotating coordinate
system. From the geometric location
of the blades for a three-bladed
rotor, the hub moments mre expressed
as

Mg =k (~—‘/3 By - ‘/—Z_ 33) (c12)

x B
Bot ']2; Bg)

(c13)

Mg, = kg(-B1 *

Do

The calculated hub moments given by equations (C12) and (C13) were then
compared with the measured hub moments expressed by eguations (c10) and (C11),

50



5.

REFERENCES

Denery, Dallas G.: Identification of System Parameters from Inpubt-Output
Data with Application to Air Vehicles, NASA TN D-6468, 1971.
A Generalized Method for

Mehra, R. K.; Stepner, D. E.; and Tyler, J. S.:
the Identification of Aircraft Stability and Control Derivatives from
Flight Test Data. Proceedings of Joint Automatic Control Conference,
Aug, 1972,

Wingrove, R. C.: Quasi-Linearization Technique for Estimating Aircraft
States from Flight Data, Journal of Aircraft, vol. 10, no. 5, May
1973.

Molugis, J. A,: Helicopter Stability Derivative Extraction from Flight
Data Using the Bayesian Approach to Estimation. J. Amer, Hellicopter
Sog., vol. 18, no, 2, April 1973.

Compuber Experiments on Periodic

Hohenemser, X. H,: and Prelewicz, D. A.:
Systems Identification Using Rotor Blade Transient Flapping-Torsion

Responses at High Advance Ratio. Specialists Meeling on Rotorcraft
Dynamics, American Helicopter Society and NASA/Ames Research Ceunter,

Moffett Field, Calif., Feb. 13-15, 19Tk,
Watts, G. A.; London, R, Y.; and Snoddy, R. J.: Trim Control and Stabil-
ity of a Gyro-Stabilized Hingeless Rotor at High Advance Ratio and Low

6.
Rotor Speed. NASA CR-11L32, 1971,

7. Watts, G. A.; and Biggers, J. C.: Horizontal Stoppable Rotor Conversion.
Presented at 2Tth Annual Forum of American Helicopter Society,

Washington, D.C., Preprint 502, May 1971.
Hingeless Rotor Vibration and Loads at

8. Watts, G. A.3; and Biggers, J. C,.:
American Helicopter Society at Mid-East Region

High Advance Ratio,
Symposium on Status of Testing and Modeling Techniques for V/STOL,

Bssington, Penn., Oct, 26-28, 1972,
Nonlinear Systems Identification in Presence of Non-

9. Ahhrun, Jean-Noel:
unigueness. NASA TN D-6L6T, 1971.
Principles‘of Dynamics., Prentice-Hall, Ine,,

10. Greenwood, Donald Y.:
Englewood Cliffs, New Jersey, 1965, p. 364.

11. Hall, W. E., Jr.: Application of Floquet Theory to the Analysis of
Rotary-Wing VIOL Stability. Stanford Univ., SUDAAR 400, Feb., 1970.

Aerodynamics of the Helicopter.

12. Gessow, A.; and Myers, G, D., Jr.:
Frederic Ungar Pub. Co., New York, 196T7.

51



13, Sissingh, G. Y.: Response Characteristics of the Gyro-Controlled
Lockheed Rotor System. 23rd National Forum of the American Helicopter
Society, Washington, D.C., May 1967.

52



! {
: | TABLE 1.— ROTOR EQUATIONS IN STATE SPACE FORM
| 0 0 . 0 ' 0 x) [ 0
0
- . , N
r - 0 a ) l 2 . — v v
; . i 0alT -1 )z 82 ~Co(I +T ~I_)m - % Cox k 1 0z (7} -1, e 22 Lpln +1 -1 )0 - 3 Ot - 5 C2{1 - e @ - GZ(I§+T 1,08 . ~f—-1~ cietbor - 2 sostrm )
3 2 (Tqk_—2T P82 Cpg k #Coll — x z 2 : [ GE GE
(L7 2 % cg(Iz‘j_sz' %keC%—KB - 2o 0de 9, ( 31;3 o | o B e _.__L_IGE - T i an : GE
. » - A A |
" TaE TeE GE cE . GE 0 D O ’ N D
0
1 0 - o s ] v u
S 0 oo 3 o 3 2 3 2 ' i %ﬁ Caf kgt _‘f'_% C?U'z_Iv)Conz - Lg_ [:2‘:1':5'I;rqlz)SI - _g Col Fy- 5 cz(Iz—Iv)conz L2 CZ('Txﬂ_v Izm_ X T L cos(p+w0)+ E_?_ sinwwol
: 2 2 3 o _3 o R I i :
a0 (lgkR-EIG)Q —(IakG-IG)ﬂz_ Z CZ(IZ—IY)Q - 7 kgla-Kg 5 o,Ca Eﬁ_ ,. a s} T 2 T ‘ Toa GE GE GE
=] ; | |
y T I Tox To ) : D x 0
" " ; 0 ) | 0 5
2] 7 o . 0 ! o 1 [ . ) )
*s ¢ ; ! Ja} L v? }Bh+Ru{z ccs ¢sin PIB3IHE(S - £ cos Dy+r sin Sw)E2 8,
1 __afBh 0 0 o E o 2732 o
1 M 0 0 _ % YQZTLOBMU(CQS ¢+gosin P)B3] -3 il ) A
5 CovR? [Bmeu(:ocos Yrsin p)B3 T i ' + %Yﬂz[ByEu[coms paath w)Bl,,,uz(% - % 203 2947 sin 214»)133]91
1.1 * % u[g_+r_cos 2y+sin 2u)B2] + & (g 008 y+sin w)HSJ {
: o o V |
WZ(E - 5 cos 2¢rC sin EW) 32] i Xg + '12;"(92[33*9((0305 ysinf IBR A
cZ(Iz-I )ﬁonz * %— 792[Blo+’2u(;ocos ptsin piBE3 ) I;
. ¥ 1 - |
XG + v ‘ | + %YQZEEH ena yrulcos ¥ sin |¢:+z;°co:.~2q;)133hx
l ' +’u2(% - 1 cos 245 sin Ew)BE:Ite.n E l .
) v 2 2 | B ‘ y
k (T_+T_g-1 )02 2 ep? k . *E v22[ B4 ein y+ulsin ¥t cos ¢ sin ¢I)E3hy+ Iy Sp
. _B x ¥y o 7 _ 2 | |
<1t T B | _ ’
' ’ o 1 '! 0 . 0 %7 g
b a )
o o . 0 . ! |
7 e o A . 1 _afme a o %‘yﬂleLH-Eu[i;ocos(ib+120°)+sin(w+120°) 53+u2[%' - %-cos 241207 )+g sin 2{ w+120°)]82 8,
_1 QU (T_+I_-I_} ¥ = QCQ(IX*I1“IZ} i g o " %'\'92{COBM\J[EOS(W+12O°)+E(:sin(w'!-lED")]ES - ' )
TR 0 3 pova”{Blenul T cos(B+120°} = | |
- i: cwgllﬁuzu[:ocos{wleoﬂ) T =5 Loy LA Iy ) " . ' .l YQQ{B?EU[E cos(§+120° 1gin (p+120 )]Blﬁ.uz[.;, - %-_ aos g[w+1200)+¢055_n 2(¢+1200)] E3bo,
) ’ :‘ + 2 ulg v _cos 2(w+120°)+ai._% 2(y+320°) JB2} F ale cosly+120°) 5 .
; v +ain($+120°) 1B3 ' o o ) . |
+sin(p+120% ) |B3 g . o xp + = y02{B3+ul cos(Y+120% )+ein(p+120%) 1B
i + % y92{B1|+2p[Kocos(w+120°)+,_in(1p+120°}]133 +5inf{p+120°) B3 . 5 K | .
sl L 1 2{ 209 ) *Uz[l‘ - 1 cos 2(w+1200) , : l
X +y Y cos 2{p+1 E 2 b A 1 M + = YQ2{B]4 EOS(¢+1?100)+u[c05(¢1+120°)5.n(¢+l?0°)+§ cosz(uﬁlED")]BS]Ax
“ ﬂ,?[l - % nos 2(4+120°)+¢ _sin 2(y+1207 )]32 tan §q 'f = .
i 2(y=1207) 22 *egein 2liz07 )]BE} i ¢ 2 3 g 1 . @ kg
Hgein 2lyls ' 7 s g, (rpr el et 2 en + Z YA2(BU sin(y+220° b+ulain? (44120 )te_cos{y+120°)sin(u+120 VIEIb b £ 8
1 2 5 CalI -1 0z & ] - -5 v
5 c;(Iz-I )ton + 2 Iz y "o Iy Iy i :
_ I ” : 0 0 1 X9 . o
’ 0 . 0 Y 0 3 A ‘
O ‘ | I. v
. 0 0 : [T Bh 1 n . oY afL _ 1 o . ) ﬂ]
; L o B = gﬂczu +-Y——_I . a 0 - % mz{coﬂh+u[cos(w+2h0“) -5 Yﬂa{—g 5 «;ni{Bh+2u[;0cu.,(w+2ho°)+sm{¢+2ho )_ B3+ [2 g cos 2{y+2L0%0+; sin 2(w+2ho”)|B2f6
. - 3 A0 (I*T -1 ) I Yn?[Bh ] - M M 0 0 l' b
@ : _ 5 |
N CZT#'BMEU[GOCOS{W%O | K ; ’ . frz_sinlpraio®) B3+ % ule +2 cos 2(prabo®) i+ & g cos{ialo®) + %Yﬂz‘B‘i‘f?u[cocos(wzho")ﬂin(weho )]'BlH-uz[E - 5 cos 2(4+240° )4z sin 2(y+2k0° )]15.3]51
| L a Q . 4
]
; +2ult _cos(u+240?) ) |
o o F +ein 2(w+21+0°)]132} ! +5:‘.n(l}l+2h0°3]B3} + -32-'-792 {23rule cos(y+ab0® Jratn(ysalo®) JB210
101 o +sin{y+2b0%} 183 ‘ !
+u?[§ B o 'J | + %Ynz{amzutcocos(wzhuf’} ' %19 + % yR2{Bk Cos(w-ELOD)+‘u[cos(lbﬁ':‘hoc)5:1n(¢+2h00)+:ucosz(¢w21{0“)]BB}AX
12 a ; 2 : .
i , mZ[_ ~ 2 cos Blgsshn®) REPR | ' B
%1p +3 sin 2(1p+2ho°}:|132 2" 2 ! ORIG&%?;CIBIL 104! E +sin(¢+2hoc)]B3+u2[% 2L oos 2{psoko®) : + % 62 Bl Sin(tlﬂ-EhU“)+u[sin2(¢+2h0°)1;Dccs(w+2h0°)sin(¢-+2ho°)]B3}Av+ £ S‘p
1 2 : : ITY L1 ‘ i

M +¢_sin 2(w+2ho°):|132} PAGE IS PO ‘[ A '
- I}r ,fgc (I - )i n? 0 +z_sin 2(¢+2’40“)]Beltan 5q . . )

=5 Cotl =1 JT L ] '

_ 2 LA . ' o : : 2 I

¥ : 13 . (Ix+1vco-1z)ﬂ Z et . L
| ' ¢ I I Fee N
L J L i' : by ¥ _ _

| !

) :

; N e ; | f INAL pag E
ThOTEE R UCIBILITY OF TH | ; E IS poog
yo | |-k, ¥ %kﬁ + 'EJ:KB x5 REPROD PAGE IS POOR P i
LT - ORIGINAL [ | |

L"B : {
1 , ,'
' FOLDOUT ERAME |




TABLE 2,- ROTOR AND GYRO PARAMETERS

Parameters

Nominal values )
with allowed percentage variation

Rotor:

Number of blades (b)

Blade inertia (for each of

b blades)
Feathering inertia (Iy)
Flapping inertia )
Inplane inertisa (II¥

Blade twist (87)

Collective angle at root (6 )

Sweep. angle (z,)

Precone angle ?B )

Tip loss factor (BE)

Blade radius (Ry)

Blade chord Wldth (c)

Airfoil type

Solidity

Blade area

Disk ares

Mast angle forward tilt

Rotor RPM (100 percent)

Hinge offset (e/Ry)

cpaRg
Iy

Spring constant {p from fig. 4)

3/2
k=1 Qz(pz—l— ‘L-lé:e):_e“ g-tan 63)

Lock number, y =

B ¥y

Gyro:

Gyro inertia
Polar moment of inertia (I,)
Diametric moment of inertia (Ip)
Gyro pitch link angle (i)
Mechenical advantage constant {(Cj)
Gyro RPM (100 percent)

0.54 kg-m? (0.4 slug-ft2)
363.4 kg-m? (268 slug-ft2) = 1
363.9 kg-m?2 (268.4 slug-ft2) =+
~9.43° + 5 percent

8.57° + T percent

1.5° + 20 percent

2.25° + 5 percent

0.97 + 2 percent
5.03m {16.5 £t)
0.357 m (1.17 ft)
NACA 63,015

0.0675

5.36 m? (57.7 £t2)
79.46 m?2 (855,3 rt2)
Do
355.6
0,11 +

ercent

30 percent
L.57 + 10 percent

+30 percent

+ 2 percent
* 2 percent

0.41 kg-m?2 (0.3 slug-ft2)
0.21 kg-m? (0.15 slug~ft2)
60° * 2 percent

0.87 + 3 percent

10,000

1 percent

PRECEDING PAGE BLANK NOT FILMEp
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TABLF 3.- PARAMETER ESTIMATES FOR STEADY-STATE LOCKED GYRO OPERATION

Value
Cordition Parameter
Nominal Estimated
85 8,57° 7.97
By 0.97 0.95
C, 0.87 0.85
I, 363.4% kg-m? 359.7 kg-m?
Vv = b1.2 n/sec (268 slug-ft2) (265.3 slug-rt?)
{80 knots) I, 363.9 kg-m? 360.,2 kg-m?
4 = 0.399 {268.4 slug-ft2) (265.7 slug-ft?)
rpm = 55.5 percent Y L, 67 5.13
kB 141,092 Nm/rad 129,345 Nm/rad
(104,064 ft-1b/rad) | {95,400 ft-1b/rad)
Lo 1.5° 1.6°
8y 2,25° 2.36°
Ao -0.012 ~0.012 (fixed)
e/Ry 0.11 0.11
6 8.57° 7.97°
B 0.97 0.95
Cy 0.87 0.85
1 363.4 kg-m? 359.7 kg-m?
Vv = 31,3 m/sec y (268 slug-ft2) (265.3 slug-ft2)
(61 knots) I, 363.9 kg-m? 360.2 kg-m?
u = Q,bo2 {268.4 slug-t2) (265,7 slug-ft2)
rpm = 41.6 percent Y L.69 5,16
kg 125,214 Nm/rad 87,651 Nm/rad
(92,353 ft-1b/rad) (64,648 £t-1b/rad)
To 1,5° 1,6°
By 2.25° 2,14°
Ao 0.005 0,005 {fixed)
e/Ry 0.11 0.11
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TABLE 4,- PARAI‘-’IETER ESTIMATES FOR TRANSIENT FREE AND LOCKED GYRO OPERATION;
= 36 m/sec (70 knots), u = 0.355, 54.2 percent rpm

Condition : Values
of gyro Parameter Nominal Egtimated
) 8.57° 9.17°
8, ~9.43° -10.93°
By 0.97 0.96
Free ¥ k. 57 : Lo
kB 138,752 Nm/rad _ 97,127 Nm/rad
: (102 338 £t-1b/rad) (71,637 ft-1b/rad)
Yo 1.5° 1.8°
B 8.57° 9.17°
By 0.97 0.98
I 363.4 kg-m? 366.5 kg-m?
s (268 slug-ft2) {(270.3 slug~rt2)
Free ¥ L.57 k.o
kg 138,752 Nm/rad 97,127 Nm/rad
(102,338 ft-1b/rad) (71,637 f%-1b/rad)
Parameten To 1.5° 1.8°
cases
studied e/Rb 0.11 0.15
8 8.57° 9.17°
By 0.97 0.98
Ca 0.87 0.85
I 363.4 kg-m? 359.7 kg-m?
v {268 slug-rt2) {265.3 slug-rt2)
Locked Y h.s57 5.02
kg 138,752 Nm/rad 97,795 Nm/rad
{102,338 ft-1b/rad) (72,130 £t-1b/rad)
W 0.355 0.348
Zg 1.5° 1.8°
Bp 2.25° 2,14
e/Rb 0.11 0.15
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Parameter Sensitivity
' constant
9o 4.0
01 3.2
By 2.7
Cy 1.1
Y,(Iy,IZ) .78
kg .5
M (2
kp 5T
Iq ST
To .52
Bp .31
Ao .15
Cq .13
ch .07
Iy .03
2 .02

U.8. Covernment Printing Offlice:

TABLE 5.~ SENSITIVITIES OF MODEL PARAMETERS
OBTAINED FROM IDENTIFICATION PROGRAM
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